
This paper describes a new numerical method for computing the values of the eigenfunctions of perturbed self-adjoint operators. The new method is based on the method of regularized traces. A mathematical model for calculating the eigenfunction values of the spectral problem concerning electrical oscillations in the extended line is developed. The elaborated algorithms make it possible to calculate the values of the eigenfunction of the perturbed operator whether the previous values are known or not. We've obtained the estimates of functional series residual sum suspended the corrections of the perturbation theory of perturbed self-adjoint operators, and proved their convergence. Effective algorithms for finding suspended perturbation theory corrections are discovered for the numerical implementation of the method. The numerical experiments on the calculation of the values of a problem on its own electrical oscillations in the extended lines show that the method is consistent with the other well-known methods of A.N.Krylov and A.M.Danilevsky. The method of regularized traces proved its reliability and high efficiency.
Работа посвящена описанию нового численного метода вычисления значений собственных функций возмущенных самосопряженных операторов, основанного на методе регуляризованных следов. Построена математическая модель вычисления значений собственных функций спектральной задачи об электрических колебаниях в протяженной линии. Разработанные алгоритмы позволяют вычислять значения собственной функции возмущенного оператора незавсимо от того, известны предыдущие значения собственных функции или нет. Получены оценки остатков сумм функциональных рядов взвешенных поправок теории возмущений возмущенных самосопряженных операторов, и доказана их сходимость. Для вычислительной реализации метода найдены эффективные алгоритмы нахождения поправок теории возмущений. Проведенные численные эксперименты вычисления значений собственных функций задачи об электрических колебаниях в протяженной линии показывают, что метод хорошо согласуется с другими известными методами А.Н. Крылова и А.М. Данилевского. Метод регуляризованных следов показал свою надежность и высокую эффективность.
ЗАДАЧА ШТУРМА ЛИУВИЛЛЯ, СОБСТВЕННЫЕ ЧИСЛА, СОБСТВЕННЫЕ ФУНКЦИИ, ТЕОРИЯ ВОЗМУЩЕНИЙ, МЕТОД РЕГУЛЯРИЗОВАННЫХ СЛЕДОВ
ЗАДАЧА ШТУРМА ЛИУВИЛЛЯ, СОБСТВЕННЫЕ ЧИСЛА, СОБСТВЕННЫЕ ФУНКЦИИ, ТЕОРИЯ ВОЗМУЩЕНИЙ, МЕТОД РЕГУЛЯРИЗОВАННЫХ СЛЕДОВ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
