Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vestnik of Saint Pet...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Возможно ли решать динамические задачи медицины с помощью математических моделей?

Возможно ли решать динамические задачи медицины с помощью математических моделей?

Abstract

Прогнозирование приобретенной бактериальной резистентности крайне важная проблема в современной медицине. Безусловно, разработка таких методов, а затем и внедрение их в реальную клиническую практику даст существенный инструмент для рациональной антибактериальной терапии. Одним из методических подходов прогнозирования является применение математического моделирования. В данной работе рассматривают качественные особенности математических моделей при решении различных задач в микробиологии и иммунологии, где для прогнозирования строится система дифференциальных уравнений. Показано, что уже на ранней стадии анализа важно определить, что в большей степени влияет на поведение переменных нелинейности или учет запаздывания, т. е. из какого класса выбирается математическая модель. Даны рекомендации, как осуществить выбор математической модели.

Prediction of the acquired bacterial resistance is a very important problem in the modern medical science. Analysis and development of prediction methods and practical application of them in a medical practice can supply the significant tool for efficient antimicrobial therapy. Mathematical modeling is one of these methods. Mathematical models with the system of diff erential equations and their properties are considered in the present paper. These models are applied for prediction problems in microbiology and immunology. In this paper demonstrated, that estimation of the nonlinearity or time delay infl uence on the variables of the model is important for model selection at the fi rst stage of the analysis.

Keywords

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ, ПРОГНОЗИРОВАНИЕ, ПРИОБРЕТЕННАЯ БАКТЕРИАЛЬНАЯ РЕЗИСТЕНТНОСТЬ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold