
The Schrodinger equation describes quantum mechanics processes occurring when particles pass through a potential barrier. In this problem, it is necessary to find the probability density of particles and to track its evolution in time. In this paper, it is shown that time-dependent Schrodinger's equation has a direct analogy to the heat conductivity equation, differing from it in the imaginary time. As a numerical method of the decision, it is offered to apply the method of matrix exponential function in which a finite difference analogue of the one-dimensional Laplacian is considered as a matrix operating on a vector. This way of the solution allows one to consider potential barriers of any form in the Schrodinger equation. Time is included now into the decision as a parameter, and it allows one to get rid of the necessity of time quantization and to do it only on a spatial variable. In this aspect, this way favorably differs from traditional ways of solving evolutionary equations which use quantization both on time and on a spatial variable. Results of numerical experiments show that the greatest amplitudes of probability are localized in the field of minima of potential barriers.
Уравнение Шредингера описывает квантово-механические процессы, происходящие при движении частиц через потенциальный барьер. В такой задаче, нужно находить плотность вероятности частиц и проследить ее эволюцию во времени. Результаты такой теории находят применения в ряде вопросов теоретической физики, например в нанотехнологиях, где нужно вычислять накопления материальных частиц в потенциальных ямках. Зависящее от времени уравнение Шредингера имеет прямую аналогию с уравнением теплопроводности. Поэтому в качестве численного алгоритма применяется метод матричной экспоненты, применяемый ранее для решения уравнения теплопроводности.
АМПЛИТУДА ВЕРОЯТНОСТИ,УРАВНЕНИЕ ШРЕДИНГЕРА,МАТРИЧНАЯ ЭКСПОНЕНТА,УРАВНЕНИЕ ТЕПЛОПРОВОДНОСТИ,ПОТЕНЦИАЛЬНЫЕ БАРЬЕРЫ,PROBABILITY AMPLITUDE,SCHRODINGER EQUATION,MATRIX EXHIBITOR,HEAT CONDUCTIVITY EQUATION,POTENTIAL BARRIERS
АМПЛИТУДА ВЕРОЯТНОСТИ,УРАВНЕНИЕ ШРЕДИНГЕРА,МАТРИЧНАЯ ЭКСПОНЕНТА,УРАВНЕНИЕ ТЕПЛОПРОВОДНОСТИ,ПОТЕНЦИАЛЬНЫЕ БАРЬЕРЫ,PROBABILITY AMPLITUDE,SCHRODINGER EQUATION,MATRIX EXHIBITOR,HEAT CONDUCTIVITY EQUATION,POTENTIAL BARRIERS
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
