Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Политическая лингвис...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Языковые маркеры манипуляции в поляризованном политическом дискурсе: опыт параметризации

Языковые маркеры манипуляции в поляризованном политическом дискурсе: опыт параметризации

Abstract

В статье описываются результаты работы по созданию компьютерной программы для определения уровня манипулятивности политического медиатекста. Манипуляция рассматривается прежде всего как наложение некоторых ограничений на контекст, направляющее внимание целевой группы мишени манипуляции по траектории, нужной манипулятору. Наличие контекстуальных ограничений с необходимостью влечет за собой появление в манипулятивном тексте специфических вербальных маркеров. В качестве материала исследования используются тексты американских СМИ, посвященные проблеме «украинского кризиса» и реализующие так называемый поляризованный дискурс. На основе данных, полученных в ходе дискурс-анализа медиатекстов по методике Т. ван Дейка, а также в результате социолингвистического эксперимента обосновывается выбор шести параметров измерения для установления уровня манипулятивности: военная терминология, лексика по тематике нацизма, «советская» лексика, список экспериментально полученных маркеров манипуляции, прецедентные имена, прилагательные с антонимическими приставками «anti-» и «pro-». Посредством привлечения контрольного и тренировочного корпусов и последующей оценки их отличий по выделенным параметрам с помощью двухвыборочного коэффициента Стьюдента устанавливается статистическая значимость данных отличий, и тем самым подтверждается валидность гипотезы о значимости выделенных критериев для оценки текста как манипулятивного.

This article investigates the problem of machine retrieving of highly manipulative texts in terms of political media discourse. We consider manipulation as a context constraint and suppose that there are some verbal markers used for constraining the addressee cognitive context the importance of which grows up in the context of polarized discourse. For the present research, we used articles from the Western media (the Washington Post, the New York Times, etc.). Thus, we detected verbal markers of manipulation and evaluated their weight in text content by, firstly, analyzing randomly chosen articles according to the van Dijk’s theory of contextual and textual analysis and, secondly, by making a sociolinguistic experiment. Then, we detected six features which might be employed to design a computer analyzer: soviet lexicon, Nazi lexicon, military terminology, discursive markers of manipulation selected by respondents, prefixes pro-, anti, precedent names or personalities and measured value of two of them with the use of corpus processing pipeline. These two features are quite statistically significant and can be used as manipulation metrics. It is expected that such metrics would become a tool for measuring a quantitative degree of manipulation in political articles.

Keywords

МАНИПУЛЯЦИЯ,ПОЛИТИЧЕСКИЙ ДИСКУРС,КОМПЬЮТЕРНЫЕ ЛИНГВИСТИЧЕСКИЕ ТЕХНОЛОГИИ,ПАРАМЕТРЫ ИЗМЕРЕНИЯ,MANIPULATION,POLITICAL MEDIA DISCOURSE,FEATURING,CONTEXT CONSTRAINT,POLARIZED DISCOURSE,MACHINE RETRIEVING

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze