publication . Article . Research . Preprint . 2018

Catch-Up: A Rule that Makes Service Sports More Competitive

Brams, Steven J.; Ismail, Mehmet; Kilgour, D. Marc; Stromquist, Walter;
Open Access English
Abstract
Service sports include two-player contests such as volleyball, badminton, and squash. We analyze four rules, including the Standard Rule (SR), in which a player continues to serve until he or she loses. The Catch-Up Rule (CR) gives the serve to the player who has lost the previous point - as opposed to the player who won the previous point, as under SR. We also consider two Trailing Rules that make the server the player who trails in total score. Surprisingly, compared with SR, only CR gives the players the same probability of winning a game while increasing its expected length, thereby making it more competitive and exciting to watch. Unlike one of the Trailing...
Subjects
acm: ComputingMilieux_PERSONALCOMPUTING
free text keywords: fairness, service sports, 2 International, Economics - Theoretical Economics, d63 - Equity, Justice, Inequality, and Other Normative Criteria and Measurement, l83 - "Sports; Gambling; Recreation; Tourism", competitiveness, strategy-proofness, Sports rules, c72 - Noncooperative Games, Markov processes, 60J20, 91A80, 91A20, Mathematics - History and Overview
16 references, page 1 of 2

[1] N. Anbarci, C.-J. Sun, M. U. U¨nver (2015). Designing fair tiebreak mechanisms: The case of FIFA penalty shootouts. http://ssrn.com/abstract=2558979 [OpenAIRE]

[2] C. L. Anderson (1977). Note on the advantage of first serve. Journal of Combinatorial Theory, Series A. 23(3): 363.

[3] J. D. Barrow (2012). Mathletics: 100 Amazing Things You Didn't Know about the World of Sports. W. W. Norton.

[4] S. J. Brams, A. D. Taylor (1999). The Win-Win Solution: Guaranteeing Fair Shares to Everybody. W. W. Norton.

[5] S. J. Brams, M. S. Ismail (2018). Making the rules of sports fairer. SIAM Review. 60(1): 181-202.

[6] D. Cohen-Zada, A. Krumer, O. M. Shapir (2018). Testing the effect of serve order in tennis tiebreak. Journal of Economic Behavior & Organization. 146: 106-115.

[7] D. Hess (2014). Golf on the Moon: Entertaining Mathematical Paradoxes and Puzzles. Mineola, NY: Dover Publications.

[8] A. Isaksen, M. Ismail, S. J. Brams, A. Nealen (2015). Catch-Up: A game in which the lead alternates. Game & Puzzle Design. 1(2): 38-49.

[9] J. G. Kemeny, J. L. Snell (1983). Finite Markov Chains. New York: Springer.

[10] J. G. Kingston (1976). Comparison of scoring systems in two-sided competitions. Journal of Combinatorial Theory, Series A. 20(3): 357-362. [OpenAIRE]

[11] I. Palacios-Huerta (2014). Beautiful Game Theory: How Soccer Can Help Economics. Princeton Univ. Press.

[12] M. Pauly (2014). Can strategizing in round-robin subtournaments be avoided? Social Choice and Welfare. 43(1): 29-46. [OpenAIRE]

[13] B. J. Ruffle, O. Volij (2016). First-mover advantage in best-of series: an experimental comparison of role-assignment rules. International Journal of Game Theory. 45(4): 933-970.

[14] M. F. Schilling (2009). Does momentum exist in competitive volleyball? CHANCE. 22(4): 29-35.

[15] J. von Neumann, O. Morgenstern (1953). Theory of Games and Economic Behavior. Third ed. Princeton Univ. Press.

16 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Research . Preprint . 2018

Catch-Up: A Rule that Makes Service Sports More Competitive

Brams, Steven J.; Ismail, Mehmet; Kilgour, D. Marc; Stromquist, Walter;