publication . Article . Other literature type . Preprint . 2018

Probing spatial locality in ionic liquids with the grand canonical adaptive resolution molecular dynamics technique

B. Shadrack Jabes; Christian Krekeler; Rupert Klein; L. Delle Site;
Open Access English
  • Published: 21 May 2018 Journal: The Journal of Chemical Physics, volume 148, issue 19, page 193,804 (issn: 0021-9606, eissn: 1089-7690, Copyright policy)
We employ the Grand Canonical Adaptive Resolution Molecular Dynamics Technique (GC-AdResS) to test the spatial locality of the 1-ethyl 3-methyl imidazolium chloride liquid. In GC-AdResS atomistic details are kept only in an open sub-region of the system while the environment is treated at coarse-grained level, thus if spatial quantities calculated in such a sub-region agree with the equivalent quantities calculated in a full atomistic simulation then the atomistic degrees of freedom outside the sub-region play a negligible role. The size of the sub-region fixes the degree of spatial locality of a certain quantity. We show that even for sub-regions whose radius c...
Persistent Identifiers
free text keywords: Ionic liquids, Molecular dynamics, Chemical compounds, Classical statistical mechanics, Probability theory, Physical and Theoretical Chemistry, General Physics and Astronomy, Physics - Chemical Physics, Computational chemistry, Imidazolium chloride, Molecular dynamics, Locality, Ionic liquid, chemistry.chemical_compound, chemistry, Mathematics, Statistical physics, Large class, Molecule, Adaptive resolution
Related Organizations
Funded by
An e-infrastructure for software, training and consultancy in simulation and modelling
  • Funder: European Commission (EC)
  • Project Code: 676531
  • Funding stream: H2020 | RIA
Validated by funder
46 references, page 1 of 4

1R. Shi and Y. Wang, “Dual Ionic and Organic Nature of Ionic Liquids,” Scientific Reports 6, 19644 (2016).

2N. V. Plechkova and K. R. Seddon, “Applications of Ionic Liquids in the Chemical Industry,” Chem. Soc. Rev. 37, 123-150 (2008). [OpenAIRE]

3P. Hapiot and C. Lagrost, “Electrochemical Reactivity in Room-Temperature Ionic Liquids,” Chem. Rev. 108, 2238-2264 (2008). [OpenAIRE]

4R. Giernoth, “Task-Specific Ionic Liquids,” Angew. Chem., Int. Ed. 49, 2834-2839 (2010).

5A. Sawant, D. Raut, N. Darvatkar, and M. Salunkhe, “Recent Developments of TaskSpecific Ionic Liquids in Organic Synthesis,” Green Chem. Lett. Rev. 4, 41-54 (2011).

6Y. Sahbaz, H. D. Williams, T. Nguyen, J. Saunders, L. Ford, S. A. Charman, P. J. Scammells, and C. J. H. Porter, “Transformation of Poorly Water-Soluble Drugs into Lipophilic Ionic Liquids Enhances Oral Drug Exposure from Lipid Based Formulations,” Mol. Pharmaceutics 12, 1980-1991 (2015).

7M. L. Hart, D. P. Do, R. A. Ansari, and S. A. Rizvi, “Brief Overview of Various Approaches to Enhance Drug Solubility,” J. Dev. Drugs 2, 1000110-1000116 (2013).

8M. Lin, M. Gong, B. Lu, Y. Wu, D. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B. Hwang, and et al., “An Ultrafast Rechargeable Aluminium-Ion Battery,” Nature 520, 324-328 (2015).

9G. M. A. Girard, M. Hilder, H. Zhu, D. Nucciarone, K. Whitbread, S. Zavorine, M. Moser, M. Forsyth, D. R. MacFarlane, and P. C. Howlett, “Electrochemical and Physicochemical Properties of Small Phosphonium Cation Ionic Liquid Electrolytes with High Lithium Salt Content,” Phys. Chem. Chem. Phys. 17, 8706-8713 (2015).

10D. M. Piper, T. Evans, K. Leung, T. Watkins, J. Olson, S. C. Kim, S. S. Han, V. Bhat, K. H. Oh, D. A. Buttry, and et al., “Stable Silicon-Ionic Liquid Interface for NextGeneration Lithium-Ion Batteries,” Nat. Commun. 6, 6230 (2015).

11C. Zhang, A. Yamazaki, J. Murai, J. Park, T. Mandai, K. Ueno, K. Dokko, and M. Watanabe, “Chelate Effects in Glyme/Lithium Bis-(Trifluoromethanesulfonyl)Amide Solvate Ionic Liquids, Part 2: Importance of Solvate-Structure Stability for Electrolytes of Lithium Batteries,” J. Phys. Chem. C 118, 17362-17373 (2014).

12M. Taha, M. R. Almeida, F. A. Silva, P. Domingues, S. P. M. Ventura, J. A. P. Coutinho, and M. G. Freire, “Novel Biocompatible and Self-Buffering Ionic Liquids for Biopharmaceutical Applications,” Chem. -Eur. J. 21, 4781-4788 (2015).

13J. Gorke, F. Srienc, and R. Kazlauskas, “Toward Advanced Ionic Liquids. Polar, EnzymeFriendly Solvents for Biocatalysis,” Biotechnol. Bioprocess Eng. 15, 40-53 (2010).

14A. M. Socha, R. Parthasarathi, J. Shi, S. Pattathil, D. Whyte, M. Bergeron, A. George, K. Tran, V. Stavila, S. Venkatachalam, and et al., “Efficient Biomass Pretreatment Using Ionic Liquids Derived from Lignin and Hemicellulose,” Proc. Natl. Acad. Sci. U. S. A. 111, E3587-E3595 (2014).

15H. Wang, G. Gurau, and R. D. Rogers, “Ionic Liquid Processing of Cellulose,” Chem. Soc. Rev. 41, 1519-1537 (2012).

46 references, page 1 of 4
Any information missing or wrong?Report an Issue