Profiling vs. Time vs. Content: What Does Matter for Top-k Publication Recommendation Based on Twitter Profiles?

Other literature type, Conference object, Preprint English OPEN
Nishioka, Chifumi; Scherp, Ansgar;

<p>So far it is unclear how different factors of a scientific publication recommender system based on users' tweets have an influence on the recommendation performance. We examine three different factors, namely profiling method, temporal decay, and richness of content.... View more
  • References (30)
    30 references, page 1 of 3

    [1] D. M. Blei and J. D. La erty. Dynamic topic models. In ICML. ACM, 2006.

    [2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3, 2003.

    [3] S. Bostandjiev, J. O'Donovan, and T. Ho&#x7f;llerer. TasteWeights: a visual interactive hybrid recommender system. In RecSys. ACM, 2012.

    [4] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative ltering. In UAI. Morgan Kaufmann, 1998.

    [5] J. Chen, R. Nairn, L. Nelson, M. Bernstein, and E. Chi. Short and tweet: experiments on recommending content from information streams. In CHI. ACM, 2010.

    [6] W. Feng and J. Wang. We can learn your# hashtags: Connecting tweets to explicit topics. In ICDE. IEEE, 2014.

    [7] F. Goossen, W. IJntema, F. Frasincar, F. Hogenboom, and U. Kaymak. News personalization using the CF-IDF semantic recommender. In WIMS. ACM, 2011.

    [8] T. L. Gri ths and M. Steyvers. Finding scienti c topics. NAS, 101, 2004.

    [9] T. J. Hazen. Direct and latent modeling techniques for computing spoken document similarity. In the Spoken Language Technology. IEEE, 2010.

    [10] L. Hong and B. D. Davison. Empirical study of topic modeling in Twitter. In SOMA. ACM, 2010.

  • Metrics
    No metrics available
Share - Bookmark