publication . Conference object . Other literature type . Preprint . 2019

Neural Baselines for Word Alignment

NGO HO, Anh Khoa; Yvon, François;
Open Access
  • Published: 02 Nov 2019
Comment: The 16th International Workshop on Spoken Language Translation, Nov 2019, Hong Kong, Hong Kong SAR China
free text keywords: Computer Science - Computation and Language, Computer Science - Machine Learning, [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG], [INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL]
Download fromView all 5 versions
Conference object . 2019
Provider: ZENODO
Other literature type . 2019
Provider: Datacite
Other literature type . 2019
Provider: Datacite
38 references, page 1 of 3

[1] L. Specia, C. Scarton, G. H. Paetzold, and G. Hirst, Quality Estimation for Machine Translation, 2018.

[2] F. J. Och and H. Ney, “A systematic comparison of various statistical alignment models,” Comput. Linguist., vol. 29, no. 1, pp. 19-51, Mar. 2003.

[3] J. Tiedemann, Bitext Alignment, ser. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers, 2011. [Online]. Available: books?id=Kt5cAQAAQBAJ

[4] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer, “The mathematics of statistical machine translation: Parameter estimation,” Comput. Linguist., vol. 19, no. 2, pp. 263-311, June 1993. [Online]. Available:

[5] S. Vogel, H. Ney, and C. Tillmann, “Hmm-based word alignment in statistical translation,” in Proceedings of the 16th Conference on Computational Linguistics - Volume 2, ser. COLING '96. Stroudsburg, PA, USA: Association for Computational Linguistics, 1996, pp. 836-841. [OpenAIRE]

[6] C. Dyer, V. Chahuneau, and N. A. Smith, “A simple, fast, and effective reparameterization of IBM model 2,” in Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, Georgia, June 2013, pp. 644-648. [Online]. Available: anthology/N13-1073

[7] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach. Learn. Res., vol. 12, pp. 2493-2537, Nov. 2011. [Online]. Available: [OpenAIRE]

[8] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoderdecoder approaches,” in Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation. Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 103-111. [Online]. Available:

[9] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” CoRR, vol. abs/1409.0473, 2014. [Online]. Available: http: //

[10] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural machine translation,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for Computational Linguistics, Sept. 2015, pp. 1412-1421. [Online]. Available:

[11] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent Trends in Deep Learning Based Natural Language Processing,” ArXiv e-prints, Aug. 2017.

[12] N. Yang, S. Liu, M. Li, M. Zhou, and N. Yu, “Word alignment modeling with context dependent deep neural network,” in Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Sofia, Bulgaria: Association for Computational Linguistics, 2013, pp. 166-175.

[13] A. Tamura, T. Watanabe, and E. Sumita, “Recurrent neural networks for word alignment model,” in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Baltimore, Maryland: Association for Computational Linguistics, June 2014, pp. 1470-1480.

[14] T. Alkhouli, G. Bretschner, J.-T. Peter, M. Hethnawi, A. Guta, and H. Ney, “Alignment-based neural machine translation,” in Proceedings of the First Conference on Machine Translation. Berlin, Germany: Association for Computational Linguistics, Aug. 2016, pp. 54-65. [Online]. Available:

[15] W. Wang, T. Alkhouli, D. Zhu, and H. Ney, “Hybrid neural network alignment and lexicon model in direct hmm for statistical machine translation,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Vancouver, Canada: Association for Computational Linguistics, 2017, pp. 125-131. [Online]. Available:

38 references, page 1 of 3
Any information missing or wrong?Report an Issue