publication . Article . Other literature type . 2019

Inception Mechanisms of Tunneling Nanotubes

David Stopar; Aleš Iglič; Mitja Drab; Veronika Kralj-Iglič;
Open Access English
  • Published: 16 May 2019 Journal: Cells, volume 8, issue 6, page 626 (eissn: 2073-4409, Copyright policy)
Abstract
<jats:p>Tunneling nanotubes (TNTs) are thin membranous tubes that interconnect cells, representing a novel route of cell-to-cell communication and spreading of pathogens. TNTs form between many cell types, yet their inception mechanisms remain elusive. We review in this study general concepts related to the formation and stability of membranous tubular structures with a focus on a deviatoric elasticity model of membrane nanodomains. We review experimental evidence that tubular structures initiate from local membrane bending facilitated by laterally distributed proteins or anisotropic membrane nanodomains. We further discuss the numerical results of several theor...
Subjects
free text keywords: tunneling nanotubes, filopodia, anisotropic membrane domains, cytoskeletal forces, f-actin, Review, lcsh:Biology (General), lcsh:QH301-705.5, Membrane bending, Nanotechnology, Quantum tunnelling, Motor protein, Cytoskeleton, Membrane, Materials science
Funded by
EC| VES4US
Project
VES4US
Extracellular vesicles from a natural source for tailor-made nanomaterials
  • Funder: European Commission (EC)
  • Project Code: 801338
  • Funding stream: H2020 | RIA
Communities
FET H2020FET OPEN: FET-Open research and innovation actions
FET H2020FET OPEN: Extracellular vesicles from a natural source for tailor-made nanomaterials
100 references, page 1 of 7

Arrigler, V., Hägerstrand, H., Kralj-Iglic, V., Iglic, A., Gomiscek, G., Sevsek, F.. Microtubes and nanotubes of a phospholipid bilayer membrane. J. Phys. A Math. Gen.. 2002; 35: 1533-1549 [OpenAIRE]

Iglič, A., Hägerstrand, H., Bobrowska-Hägerstrand, M., Arrigler, V., Kralj-Iglič, V.. Possible role of phospholipid nanotubes in directed transport of membrane vesicles. Phys. Lett. A. 2003; 310: 493-497 [OpenAIRE]

Kralj-Iglič, V., Iglič, A., Bobrowska-Hägerstrand, M., Hägerstrand, H.. Tethers connecting daughter vesicles and parent red blood cell may be formed due to ordering of anisotropic membrane constituents. Colloids Surf. A Physicochem. Eng. Asp.. 2001; 179: 57-64

Rustom, A., Saffrich, R., Walther, P., Markovic, I., Gerdes, H.-H.. Nanotubular Highways for Intercellular Organelle Transport. Science. 2004; 303: 1007-1010 [OpenAIRE] [PubMed] [DOI]

Lou, E., Fujisawa, S., Morozov, A., Barlas, A., Romin, Y., Dogan, Y., Gholami, S., Moreira, A.L., Manova-Todorova, K., Moore, M.A.S.. Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma. PLoS ONE. 2012; 7 [OpenAIRE] [DOI]

Rupp, I., Sologub, L., Williamson, K.C., Scheuermayer, M., Reininger, L., Doerig, C., Eksi, S., Kombila, D.U., Frank, M., Pradel, G.. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut. Cell Res.. 2011; 21: 683 [OpenAIRE] [PubMed] [DOI]

Önfelt, B., Nedvetzki, S., Benninger, R.K.P., Purbhoo, M.A., Sowinski, S., Hume, A.N., Seabra, M.C., Neil, M.A.A., French, P.M.W., Davis, D.M.. Structurally Distinct Membrane Nanotubes between Human Macrophages Support Long-Distance Vesicular Traffic or Surfing of Bacteria. J. Immunol.. 2006; 177: 8476-8483 [OpenAIRE] [PubMed] [DOI]

Gurke, S., Barroso, J.F.V., Gerdes, H.-H.. The art of cellular communication: tunneling nanotubes bridge the divide. Histochem. Cell Biol.. 2008; 129: 539-550 [OpenAIRE] [PubMed] [DOI]

Sowinski, S., Jolly, C., Berninghausen, O., Purbhoo, M.A., Chauveau, A., Köhler, K., Oddos, S., Eissmann, P., Brodsky, F.M., Hopkins, C.. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature. 2008; 10: 211-219 [OpenAIRE] [DOI]

Kabaso, D., Lokar, M., Kralj-Iglič, V., Veranič, P., Iglič, A., Iglic, A.. Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines. Int. J. Nanomed.. 2011; 6: 495-509 [OpenAIRE] [DOI]

Veranič, P., Lokar, M., Schütz, G.J., Weghuber, J., Wieser, S., Hägerstrand, H., Kralj-Iglič, V., Iglič, A.. Different Types of Cell-to-Cell Connections Mediated by Nanotubular Structures. Biophys. J.. 2008; 95: 4416-4425 [OpenAIRE] [PubMed] [DOI]

Gerdes, H.-H., Rustom, A., Wang, X.. Tunneling nanotubes, an emerging intercellular communication route in development. Mech. Dev.. 2013; 130: 381-387 [OpenAIRE] [PubMed] [DOI]

Vignais, M.-L., Caicedo, A., Brondello, J.-M., Jorgensen, C.. Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy. Stem Cells Int.. 2017; 2017: 1-14 [OpenAIRE] [PubMed] [DOI]

Austefjord, M.W., Gerdes, H.H., Wang, X.. Tunneling nanotubes: Diversity in morphology and structure. Commun. Integr. Biol.. 2014; 7: e27934 [OpenAIRE] [PubMed] [DOI]

Nawaz, M., Fatima, F.. Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links. Front. Mol. Biosci.. 2017; 4: 50 [OpenAIRE] [PubMed] [DOI]

100 references, page 1 of 7
Related research
Abstract
<jats:p>Tunneling nanotubes (TNTs) are thin membranous tubes that interconnect cells, representing a novel route of cell-to-cell communication and spreading of pathogens. TNTs form between many cell types, yet their inception mechanisms remain elusive. We review in this study general concepts related to the formation and stability of membranous tubular structures with a focus on a deviatoric elasticity model of membrane nanodomains. We review experimental evidence that tubular structures initiate from local membrane bending facilitated by laterally distributed proteins or anisotropic membrane nanodomains. We further discuss the numerical results of several theor...
Subjects
free text keywords: tunneling nanotubes, filopodia, anisotropic membrane domains, cytoskeletal forces, f-actin, Review, lcsh:Biology (General), lcsh:QH301-705.5, Membrane bending, Nanotechnology, Quantum tunnelling, Motor protein, Cytoskeleton, Membrane, Materials science
Funded by
EC| VES4US
Project
VES4US
Extracellular vesicles from a natural source for tailor-made nanomaterials
  • Funder: European Commission (EC)
  • Project Code: 801338
  • Funding stream: H2020 | RIA
Communities
FET H2020FET OPEN: FET-Open research and innovation actions
FET H2020FET OPEN: Extracellular vesicles from a natural source for tailor-made nanomaterials
100 references, page 1 of 7

Arrigler, V., Hägerstrand, H., Kralj-Iglic, V., Iglic, A., Gomiscek, G., Sevsek, F.. Microtubes and nanotubes of a phospholipid bilayer membrane. J. Phys. A Math. Gen.. 2002; 35: 1533-1549 [OpenAIRE]

Iglič, A., Hägerstrand, H., Bobrowska-Hägerstrand, M., Arrigler, V., Kralj-Iglič, V.. Possible role of phospholipid nanotubes in directed transport of membrane vesicles. Phys. Lett. A. 2003; 310: 493-497 [OpenAIRE]

Kralj-Iglič, V., Iglič, A., Bobrowska-Hägerstrand, M., Hägerstrand, H.. Tethers connecting daughter vesicles and parent red blood cell may be formed due to ordering of anisotropic membrane constituents. Colloids Surf. A Physicochem. Eng. Asp.. 2001; 179: 57-64

Rustom, A., Saffrich, R., Walther, P., Markovic, I., Gerdes, H.-H.. Nanotubular Highways for Intercellular Organelle Transport. Science. 2004; 303: 1007-1010 [OpenAIRE] [PubMed] [DOI]

Lou, E., Fujisawa, S., Morozov, A., Barlas, A., Romin, Y., Dogan, Y., Gholami, S., Moreira, A.L., Manova-Todorova, K., Moore, M.A.S.. Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma. PLoS ONE. 2012; 7 [OpenAIRE] [DOI]

Rupp, I., Sologub, L., Williamson, K.C., Scheuermayer, M., Reininger, L., Doerig, C., Eksi, S., Kombila, D.U., Frank, M., Pradel, G.. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut. Cell Res.. 2011; 21: 683 [OpenAIRE] [PubMed] [DOI]

Önfelt, B., Nedvetzki, S., Benninger, R.K.P., Purbhoo, M.A., Sowinski, S., Hume, A.N., Seabra, M.C., Neil, M.A.A., French, P.M.W., Davis, D.M.. Structurally Distinct Membrane Nanotubes between Human Macrophages Support Long-Distance Vesicular Traffic or Surfing of Bacteria. J. Immunol.. 2006; 177: 8476-8483 [OpenAIRE] [PubMed] [DOI]

Gurke, S., Barroso, J.F.V., Gerdes, H.-H.. The art of cellular communication: tunneling nanotubes bridge the divide. Histochem. Cell Biol.. 2008; 129: 539-550 [OpenAIRE] [PubMed] [DOI]

Sowinski, S., Jolly, C., Berninghausen, O., Purbhoo, M.A., Chauveau, A., Köhler, K., Oddos, S., Eissmann, P., Brodsky, F.M., Hopkins, C.. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature. 2008; 10: 211-219 [OpenAIRE] [DOI]

Kabaso, D., Lokar, M., Kralj-Iglič, V., Veranič, P., Iglič, A., Iglic, A.. Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines. Int. J. Nanomed.. 2011; 6: 495-509 [OpenAIRE] [DOI]

Veranič, P., Lokar, M., Schütz, G.J., Weghuber, J., Wieser, S., Hägerstrand, H., Kralj-Iglič, V., Iglič, A.. Different Types of Cell-to-Cell Connections Mediated by Nanotubular Structures. Biophys. J.. 2008; 95: 4416-4425 [OpenAIRE] [PubMed] [DOI]

Gerdes, H.-H., Rustom, A., Wang, X.. Tunneling nanotubes, an emerging intercellular communication route in development. Mech. Dev.. 2013; 130: 381-387 [OpenAIRE] [PubMed] [DOI]

Vignais, M.-L., Caicedo, A., Brondello, J.-M., Jorgensen, C.. Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy. Stem Cells Int.. 2017; 2017: 1-14 [OpenAIRE] [PubMed] [DOI]

Austefjord, M.W., Gerdes, H.H., Wang, X.. Tunneling nanotubes: Diversity in morphology and structure. Commun. Integr. Biol.. 2014; 7: e27934 [OpenAIRE] [PubMed] [DOI]

Nawaz, M., Fatima, F.. Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links. Front. Mol. Biosci.. 2017; 4: 50 [OpenAIRE] [PubMed] [DOI]

100 references, page 1 of 7
Related research
Any information missing or wrong?Report an Issue