Higgs, dark sector and the vacuum: From Nambu-Goldstone bosons to massive particles via the hydrodynamics of a doped vacuum

Preprint English OPEN
Fedi, Marco;
  • Publisher: HAL CCSD
  • Related identifiers: doi: 10.5281/zenodo.2566644, doi: 10.5281/zenodo.2566643
  • Subject: Mass | Nambu-Goldstone bosons | quantum vacuum | dark energy | Higgs mechanism | Superfluid vacuum | spin | dilatant vacuum | fundamental interactions | Vacuum's hydrodynamics | Quantum vortices | [ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph] | [ PHYS.COND ] Physics [physics]/Condensed Matter [cond-mat] | dark matter
    arxiv: Condensed Matter::Strongly Correlated Electrons | Condensed Matter::Superconductivity

Here the physical vacuum is treated as a superfluid, fundamental quantum scalar field, coinciding with dark energy and doped with particle dark matter, able to produce massive particles and interactions via a hydrodynamic reinterpretation of the Higgs mechanism. Here th... View more
  • References (18)
    18 references, page 1 of 2

    [1] AMENDOLA, L., TSUJIKAWA, S., Dark Energy. Theory and Observations. Cambridge University Press, Cambridge (2010)

    [2] BERTONE, G., Particle Dark Matter. Observations, models and searches. Cambridge University Press, Cambridge (2010)

    [4] SBITNEV, V.I.: Physical Vacuum is a Special Superfluid Medium. In: Pahlavani, M.R. (ed.): Se- [17] RECAMI, E., SALESI, G., Phys. Rev. A57 98, lected Topics in Applications of Quantum Mechan- (1998) ics, InTech, Rijeka (2015)

    [5] VOLOVIK, G.E.: The Universe in a helium droplet, Int. Ser. Monogr. Phys. 117 (2003) [18] VILLOIS, A., KRSTULOVIC, G., PROMENT, D., SALMAN, H.: A Vortex Filament Tracking Method for the Gross-Pitaevskii Model of a Superfluid, arXiv:1604.03595v2 (2016) [6] VOLOVIK, G.E.: The Superfluid Universe, Int. Ser. [19] ASHTEKAR, A., PULLIN, J.:Loop Quantum GravMonogr. Phys. 156, Vol. 1, 570-618 (2013) ity, World Scientific, 2017 [8] HUANG, K.: Dark energy and dark matter in a superfluid universe. Preprint: arXiv:1309.5707 (2013) [7] HUANG, K.: A Superfluid Universe. World Scien- [20] ROVELLI, C., VIDOTTO, F.:Covariant Loop tific, Singapore (2016) Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory, Cambridge University Press, 2014

    [9] BOLMATOV, D., BRAZHKIN, V. V., TRACHENKO, K., The phonon theory of liquid thermodynamics. Sci. Rep. 2, 421 (2012).

    [10] ZHU, H., Yi, J., Li, M., Xiao, J., Zhang, L. et al., Observation of chiral phonons. Science, 359, Issue 6375, pp. 579-582 (2018).

    [21] I.A. PSHENICHNYUK: Pair interactions of heavy vortices in quantum fluids, arXiv:1705.10072v1 (2017)

    [22] FEDI, M. 2018, Physical vacuum as a dilatant fluid yields exact solutions to Pioneer anomaly and Mercury's perihelion precession, Can. J. Phys., doi:10.1139/cjp-2018-0744 (and on zenodo repository: https://zenodo.org/record/2566589)

    [11] LIU, D., SHI, J., Phys. Rev. Lett. 119, 075301 [23] FEDI, M. 2019, Relativistic mass due to dilatant (2017) vacuum and quantum formula for relativistic kinetic energy, doi:10.5281/zenodo.2566526

    [12] RECAMI, E., SALESI, G.:About kinematics and hydrodynamics of spinning particles: Some [24] CAHILL, R.T.: Gravity as quantum foam in-flow., simple considerations. Preprint: arXiv:quant- Preprint at: https:// arxiv.org/abs/physics/0307003 ph/9607025v1 (1996)

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    FromNumber Of ViewsNumber Of Downloads
    ZENODO 14 10
    Zenodo 14 10
Share - Bookmark