publication . Article . Preprint . 2020

Inhomogeneous response of an ion ensemble from mechanical stress

S. Zhang; N. Galland; N. Lučić; R. Le Targat; Alban Ferrier; Ph. Goldner; Bess Fang; Y. Le Coq; S. Seidelin;
Open Access English
  • Published: 01 Mar 2020 Journal: Physical Review Research, volume 2, issue 1 (eissn: 2643-1564, Copyright policy)
  • Country: France
Material strain has recently received growing attention as a complementary resource to control the energy levels of quantum emitters embedded inside a solid-state environment. Some rare-earth ion dopants provide an optical transition which simultaneously has a narrow linewidth and is highly sensitive to strain. In such systems, the technique of spectral hole burning, in which a transparent window is burned within the large inhomogeneous profile, allows one to benefit from the narrow features, which are also sensitive to strain, while working with large ensembles of ions. However, working with ensembles may give rise to inhomogeneous responses among different ion...
Persistent Identifiers
free text keywords: [PHYS]Physics [physics], Condensed Matter - Materials Science, Physics - Optics, nanoqtech, rare earth, quantum technologies, mechanical resonator, stress, Laser linewidth, Quantum, Dopant, Crystal, Condensed matter physics, Ion, Spectral hole burning, Stress (mechanics), Coherence (physics), Materials science
Funded by
EC| NanOQTech
Nanoscale Systems for Optical Quantum Technologies
  • Funder: European Commission (EC)
  • Project Code: 712721
  • Funding stream: H2020 | RIA
Validated by funder
FET H2020FET OPEN: FET-Open research projects
FET H2020FET OPEN: Nanoscale Systems for Optical Quantum Technologies
26 references, page 1 of 2

S. Zhang,1 N. Galland,1, 2 N. Lucic,1 R. Le Targat,1 A. Ferrier,3, 4 P. Goldner,3 B. Fang,1 Y. Le Coq,1 and S. Seidelin2, 5, 1LNE-SYRTE, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, Paris, France 2Univ. Grenoble Alpes, CNRS, Grenoble INP and Institut Neel, 38000 Grenoble, France 3Chimie ParisTech, Universite PSL, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France 4Sorbonne Universite, Faculte des Sciences et Ingenierie, UFR 933, 75005 Paris, France 5Institut Universitaire de France, 103 Boulevard Saint-Michel, F-75005 Paris, France (Dated: April 13, 2020) Electronic address:

[1] Ryuzi Yano, Masaharu Mitsunaga and Naoshi Uesugi, Ultralong optical dephasing time in Eu3+:Y2SiO5 Optics Letters 16, 1884 (1991)

[2] R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, Ultraslow optical dephasing in Eu3+:Y2SiO5, Phys. Rev. Lett. 72, 2179 (1994)

[3] C. W. Thiel, T. Bottger, and R. L. Cone, Rare-earthdoped materials for applications in quantum information storage and signal processing, J. Lumin. 131, 353 (2011)

[4] P. Goldner, A. Ferrier, and O. Guillot-Noel, Rare EarthDoped Crystals for Quantum Information Processing, in Handbook on the Physics and Chemistry of Rare Earths, J.-C. G. Bunzli and V. K. Pecharsky, eds. (Elsevier, 2015), Vol. 46, pp. 1-78

[5] B. Julsgaard, A. Walther, S. Kroll, and L. Rippe, Understanding laser stabilization using spectral hole burning, Optics Express 15, 11444 (2007) [OpenAIRE]

[6] M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, and T. Rosenband, Frequency stabilization to 6 10 16 via spectral-hole burning, Nature Photonics 5, 688 (2011)

[7] O. Gobron, K. Jung, N. Galland, K. Predehl, R. Letargat, A. Ferrier, P. Goldner, S. Seidelin and Y. Le Coq, Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals, Optics Express 25, 15539 (2017) [OpenAIRE]

[8] I. Yeo, P.-L. de Assis, A. Gloppe, E. Dupont-Ferrier, P. Verlot, N. S. Malik, E. Dupuy, J. Claudon, J.-M. Gerard, A. Au eves, G. Nogues, S. Seidelin, J. Poizat, O. Arcizet, and M. Richard, Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system, Nat. Nanotechnol. 9, 106 (2014)

[9] J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, Strain Coupling of a Nitrogen-Vacancy Center Spin to a Diamond Mechanical Oscillator, Phys. Rev. Lett. 113, 020503 (2014)

[10] P. Ovartchaiyapong, K. W. Lee, B. A. Myers and A. C. Bleszynski Jayich, Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator, Nature communication 5, 4429 (2014)

[11] E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, Cooling a mechanical resonator with nitrogenvacancy centres using a room temperature excited state spin-strain interaction, Nature Communications 8, 14358 (2017)

[12] K. M lmer, Y. Le Coq, and S. Seidelin, Dispersive coupling between light and a rare-earth-ion-doped mechanical resonator, Phys. Rev. A 94, 053804 (2016) [OpenAIRE]

[13] S. Seidelin, Y. Le Coq and K. M lmer, Rapid cooling of a strain-coupled oscillator by an optical phase-shift measurement, Phys. Rev. A 100, 013828 (2019) [OpenAIRE]

[14] A. Louchet-Chauvet, R. Ahlefeldt, and T. Chaneliere, Piezospectroscopic measurement of high-frequency vibrations in a pulse-tube cryostat, Review of Scienti c Instruments 90, 034901 (2019) [OpenAIRE]

26 references, page 1 of 2
Any information missing or wrong?Report an Issue