publication . Other literature type . Article . 2018

Low-frequency magnetic sensing by magnetoelectric metglas/bidomain LiNbO3 long bars

Alexander M. Kislyuk; Nikolai A. Sobolev; Nikolai A. Sobolev; Andrei L. Kholkin; Svetlana P. Kobeleva; João V. Vidal; Yurii N. Parkhomenko; Andrei V. Turutin; Andrei V. Turutin; Mikhail D. Malinkovich; ...
Open Access English
  • Published: 30 Apr 2018
  • Publisher: Zenodo
  • Country: Portugal
We present an investigation into the magnetic sensing performance of magnetoelectric bilayered metglas/bidomain LiNbO<sub>3</sub> long thin bars operating in a cantilever or free vibrating regime and under quasi-static and low-frequency resonant conditions. Bidomain single crystals of Y + 128°-cut LiNbO<sub>3</sub> were engineered by an improved diffusion annealing technique with a polarization macrodomain structure of the 'head-to-head' and 'tail-to-tail' type. Long composite bars with lengths of 30, 40 and 45 mm, as well as with and without attached small tip proof masses, were studied. ME coefficients as large as 550 V (cm Oe)<sup>−1</sup>, corresponding to a...
free text keywords: Magnetic sensors, lithium niobate, bidomain crystals, magnetoelectric effect, cantilever, low frequency, Acoustics and Ultrasonics, Electronic, Optical and Magnetic Materials, Surfaces, Coatings and Films, Condensed Matter Physics, Magnetic sensors, Lithium niobate, Bidomain crystals, Magnetoelectric effect, Cantilever, Low frequency, Optoelectronics, business.industry, business, Materials science, Metglas, Magnetic sensing
Funded by
Physical principles of the creation of novel SPINtronic materials on the base of MULTIlayered metal-oxide FILMs for magnetic sensors and MRAM
  • Funder: European Commission (EC)
  • Project Code: 778308
  • Funding stream: H2020 | MSCA-RISE
FCT| UID/CTM/50025/2013
Institute of Nanostructures, Nanomodelling and Nanofabrication
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. (FCT)
  • Project Code: 147333
  • Funding stream: 5876
Download fromView all 8 versions
Other literature type . 2018
Provider: Datacite
Article . 2018
Provider: ZENODO
Other literature type . 2018
Provider: Datacite
26 references, page 1 of 2

[1] V. Röbisch, S. Salzer, N. O. Urs, J. Reermann, E. Yarar, A. Piorra, C. Kirchhof, E. Lage, M. Höft, G. U. Schmidt, R. Knöchel, J. McCord, E. Quandt, D. Meyners, "Pushing the detection limit of thin film magnetoelectric heterostructures", J. Mater. Res., 32(6), 1009-1019, (2017).

[2] S. Salzer, V. Röbisch, M. Klug, P. Durdaut, J. McCord, D. Meyners, J. Reermann, M. Höft, R. Knöchel, "Noise Limits in Thin-Film Magnetoelectric Sensors With Magnetic Frequency Conversion", IEEE Sens. J., 18(2), 596-604, (2018). [OpenAIRE]

[3] J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, "Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature", Appl. Phys. Lett., 88(6), 062510-062512, (2006).

[4] Y. J. Wang, J. Q. Gao, M. H. Li, Y. Shen, D. Hasanyan, J. F. Li, D. Viehland, "A review on equivalent magnetic noise of magnetoelectric laminate sensors", Phil. Trans. R. Soc. A, 372(2009), 20120455-20120467, (2014).

[5] Z. Xing, J. Zhai, J. Li, D. Viehland, "Investigation of external noise and its rejection in magnetoelectric sensor design", J. Appl. Phys., 106(2), 024512-024519, (2009).

[6] D. T. H. Giang, P. A. Duc, N. T. Ngoc, N. H. Duc, "Geomagnetic sensors based on Metglas/PZT laminates", Sens. Actuators A-Phys., 179 78-82, (2012).

[7] N. H. Duc, B. D. Tu, N. T. Ngoc, V. D. Lap, D. T. H. Giang, "Metglas/PZT-Magnetoelectric 2-D Geomagnetic Device for Computing Precise Angular Position", IEEE Trans. Magn., 49(8), 4839-4842, (2013).

[8] L. Bian, Y. Wen, P. Li, Y. Wu, X. Zhang, M. Li, "Magnetostrictive stress induced frequency shift in resonator for magnetic field sensor", Sens. Actuators A-Phys., 247 453-458, (2016).

[9] M. Fiebig, "Revival of the magnetoelectric effect", J. Phys. D: Appl. Phys., 38(8), R123-R152, (2005).

[10] C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions", J. Appl. Phys., 103(3), 031101-031135, (2008).

[11] H. Palneedi, V. Annapureddy, S. Priya, J. Ryu, "Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications", Actuators, 5(1), 9-39, (2016).

[12] J. Ma, J. Hu, Z. Li, C.-W. Nan, "Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films", Adv. Mater., 23(9), 1062-1087, (2011).

[13] G. Srinivasan, "Magnetoelectric Composites", Annu. Rev. Mater. Res., 40 153-178, (2010).

[57] M. R. J. Gibbs, R. Watts, W. Karl, A. L. Powell, R. B. Yates, "Microstructures containing piezomagnetic elements", Sensor. Actuat. A: Phys, 59(1), 229-235, (1997). 4247(97)80180-X

[58] J. Gutierrez, A. Lasheras, J. M. Barandiaran, J. L. Vilas, M. S. Sebastian, L. M. Leon, "Improving the Magnetoelectric Response of Laminates Containing High Temperature Piezopolymers", IEEE Trans. Magn., 49(1), 42- 45, (2013).

26 references, page 1 of 2
Any information missing or wrong?Report an Issue