publication . Other literature type . Preprint . Conference object . 2020

ASMD: An automatic framework for compiling multimodal datasets with audio and scores

Simonetta, Federico; Ntalampiras, Stavros; Avanzini, Federico;
Open Access
  • Published: 17 Jun 2020
  • Publisher: Zenodo
Comment: Accepted at the Sound and Music Computing Conference 2020
free text keywords: Computer Science - Multimedia, Computer Science - Digital Libraries, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing, H.5.5, I.2.m, H.3.7, J.5, MIR, Dataset, Python, Audio, Music Scores, Music Sheets, Music Information Retrieval
Download fromView all 7 versions
Other literature type . 2020
Provider: Datacite
Other literature type . 2020
Provider: Datacite
Other literature type . 2020
Provider: Datacite
20 references, page 1 of 2

[4] P. K. Atrey, M. A. Hossain, A. E. Saddik, and M. S. Kankanhalli, “Multimodal fusion for multimedia analysis: A survey,” J. of Multimedia Systems, vol. 16, no. 6, pp. 345-379, 2010. [OpenAIRE]

[5] M. Minsky, “Logical versus analogical or symbolic versus connectionist or neat versus scruffy,” AI Magazine, vol. 12, no. 2, pp. 34-51, 1991. [OpenAIRE]

[6] F. Simonetta, S. Ntalampiras, and F. Avanzini, “Multimodal Music Information Processing and Retrieval: Survey and Future Challenges,” in 1st Int. Work. on Multilayer Music Representation and Processing (MMRP), 2019, pp. 10-18.

[7] L. A. Ludovico, A. Barat, F. Simonetta, and D. A. Mauro, “On the adoption of standard encoding formats to ensure interoperability of music digital archives: The ieee 1599 format.” in 6th Int. Conf. on Digital Libraries for Musicology (DLfM), 2019, pp. 20-24.

[8] M. Baker, “1,500 scientists lift the lid on reproducibility,” Nature News, vol. 533, no. 7604, p. 452, 2016.

[9] M. Hutson, “Artificial intelligence faces reproducibility crisis,” Science, vol. 359, no. 6377, pp. 725-726, 2018.

[10] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data. AMLBook, 2012.

[11] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.- Z. A. Huang, S. Dieleman, E. Elsen, J. H. Engel, and D. Eck, “Enabling factorized piano music modeling and generation with the maestro dataset.” in 7th Int. Conf. on Learning Representations (ICLR), 2019.

[12] M. Mu¨ ller, V. Konz, W. Bogler, and V. Arifi-M u¨ller, “Saarland music data (SMD),” in 12th Int. Conf. on Music Information Retrieval (ISMIR), 2011.

[13] W. Goebl. (1999) The vienna 4x22 piano corpus. [Online]. Available:

[14] J. Thickstun, Z. Harchaoui, D. P. Foster, and S. M. Kakade, “Invariances and data augmentation for supervised music transcription.” in 43rd Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 2018, pp. 2241-2245.

[15] M. Miron, J. J. Carabias-Orti, J. J. Bosch, E. Gmez, and J. Janer, “Score-informed source separation for multichannel orchestral recordings.” J. Electrical and Computer Engineering, vol. 2016, pp. 1-19, 2016.

[16] J. P. Brum. (2018) Traditional flute dataset for score alignment”. [Online]. Available: https://www.kaggle. com/jbraga/traditional-flute-dataset

[17] Z. Duan and B. Pardo, “Soundprism: An online system for score-informed source separation of music audio.” J. Sel. Topics Signal Processing, vol. 5, no. 6, pp. 1205-1215, 2011.

[18] J. Fritsch. (2012) The trios score-aligned multitrack recordings dataset. [Online]. Available: https://c4dm.

20 references, page 1 of 2
Any information missing or wrong?Report an Issue