publication . Article . Conference object . Other literature type . Preprint . 2018

Ontology-based Design of Experiments on Big Data Solutions

Zocholl, M.; Elena Camossi; Jousselme, A. -L; Ray, C.;
Open Access English
  • Published: 13 Sep 2018
Abstract
Comment: Pre-print and extended version of the poster paper presented at the 14th International Conference on Semantic Systems
Subjects
free text keywords: Ontology, Big Data Solutions, Big Data Variations, Evaluation, Design of Experiments (DoE), Situational Awareness, Design of Experiments, Computer Science - Artificial Intelligence
Related Organizations
Funded by
EC| datACRON
Project
datACRON
Big Data Analytics for Time Critical Mobility Forecasting
  • Funder: European Commission (EC)
  • Project Code: 687591
  • Funding stream: H2020 | RIA
Download fromView all 8 versions
ZENODO
Article . 2018
Provider: ZENODO
ZENODO
Conference object . 2018
Provider: ZENODO
Zenodo
Other literature type . 2018
Provider: Datacite
Zenodo
Other literature type . 2018
Provider: Datacite
16 references, page 1 of 2

which has received funding from the European Unions Horizon 2020 research and innovation programme under

Grant Agreement No. 687591. [1] ML Schema core specification. Accessed: 2018-02-08. [2] G. Blondet, J. Le Duigou, and N. Boudaoud. Ode: an ontology for numerical design of experiments. Procedia CIRP, 50:496-501, 2016. [3] G. Blondet, J. Le Duigou, N. Boudaoud, and B. Eynard. An ontology for numerical design of experiments processes. Computers in Industry,

94:26-40, 2018. [4] R. N. Carvalho, R. Haberlin, P. C. G. Costa, K. B. Laskey, and K.-C. Chang. Modeling a probabilistic ontology for maritime domain awareness.

In Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on, pages 1-8. IEEE, 2011. [5] M. Cavazzuti. Optimization methods: from theory to design scientific and technological aspects in mechanics. Springer Science & Business

Media, 2012. [6] T. Cook and D. Campbell. Quasi-experimentation design and analysis issues for field settings. Rand McNally, 1979. [7] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing techniques: An infrastructure and its potential impact.

Empirical Software Engineering, 10(4):405-435, 2005. [8] R. A. Fisher. The design of experiments. Oliver And Boyd; Edinburgh; London, 1937. [9] C. C. Insaurralde and E. Blasch. Veracity metrics for ontological decision-making support in avionics analytics. [10] C. M. Keet, A. Åawrynowicz, C. dAmato, A. Kalousis, P. Nguyen, R. Palma, R. Stevens, and M. Hilario. The data mining optimization

ontology. Web Semantics: Science, Services and Agents on the World Wide Web, 32:43 - 53, 2015. [11] R. Kitchin and G. McArdle. What makes big data, big data? exploring the ontological characteristics of 26 datasets. Big Data & Society,

3(1):2053951716631130, 2016. [12] K. Laskey, R. Haberlin, R. Carvalho, and P. Costa. Pr-owl 2 case study: A maritime domain probabilistic ontology. 808:76-83, 11 2011. [13] J. J. Louviere, T. Islam, N. Wasi, D. Street, and L. Burgess. Designing discrete choice experiments: Do optimal designs come at a price? [OpenAIRE]

Journal of Consumer Research, 35(2):360-375, 2008. [14] D. C. Montgomery. Design and Analysis of Experiments. John wiley & sons, 2017. [15] F. Natale, M. Gibin, A. Alessandrini, M. Vespe, and A. Paulrud. Mapping fishing e ort through ais data. PLOS ONE, 10(6):1-16, 06 2015. [16] P. Panov, L. Soldatova, and S. Dzˇeroski. Ontology of core data mining entities. Data Mining and Knowledge Discovery, 28(5):1222-1265,

Sep 2014. [17] K. Patroumpas, A. Artikis, N. Katzouris, M. Vodas, Y. Theodoridis, and N. Pelekis. Event recognition for maritime surveillance. In Proceedings

of the 18th International Conference on Extending Database Technology, EDBT 2015, Brussels, Belgium, March 23-27, 2015., pages 629-640,

2015. [18] J. Roy and M. Davenport. Exploitation of maritime domain ontologies for anomaly detection and threat analysis. In Waterside Security

Conference (WSS), 2010 International, pages 1-8. IEEE, 2010. [19] L. Snidaro, I. Visentini, and K. Bryan. Fusing uncertain knowledge and evidence for maritime situational awareness via markov logic networks.

Information Fusion, 21:159-172, 2015. [20] L. N. Soldatova and R. D. King. An ontology of scientific experiments. Journal of the Royal Society Interface, 3(11):795-803, 2006. [21] A. Van den Broek, R. Neef, P. Hanckmann, S. P. van Gosliga, and D. Van Halsema. Improving maritime situational awareness by fusing sensor [OpenAIRE]

information and intelligence. In Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on, pages 1-8. IEEE,

16 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Conference object . Other literature type . Preprint . 2018

Ontology-based Design of Experiments on Big Data Solutions

Zocholl, M.; Elena Camossi; Jousselme, A. -L; Ray, C.;