publication . Other literature type . Article . Preprint . Conference object . 2018

Ontology-Based Design Of Experiments On Big Data Solutions

Zocholl, M.; Elena Camossi; Jousselme, A. -L; Ray, C.;
Open Access English
  • Published: 13 Sep 2018
  • Publisher: Zenodo
Abstract
Comment: Pre-print and extended version of the poster paper presented at the 14th International Conference on Semantic Systems
Subjects
free text keywords: Design of Experiments, Ontology, Big Data Solutions, Big Data Variations, Evaluation, Design of Experiments (DoE), Situational Awareness, Computer Science - Artificial Intelligence
Related Organizations
Funded by
EC| datACRON
Project
datACRON
Big Data Analytics for Time Critical Mobility Forecasting
  • Funder: European Commission (EC)
  • Project Code: 687591
  • Funding stream: H2020 | RIA
Download fromView all 8 versions
Zenodo
Other literature type . 2018
Provider: Datacite
Zenodo
Other literature type . 2018
Provider: Datacite
ZENODO
Article . 2018
Provider: ZENODO
16 references, page 1 of 2

which has received funding from the European Unions Horizon 2020 research and innovation programme under

Grant Agreement No. 687591. [1] ML Schema core specification. Accessed: 2018-02-08. [2] G. Blondet, J. Le Duigou, and N. Boudaoud. Ode: an ontology for numerical design of experiments. Procedia CIRP, 50:496-501, 2016. [3] G. Blondet, J. Le Duigou, N. Boudaoud, and B. Eynard. An ontology for numerical design of experiments processes. Computers in Industry,

94:26-40, 2018. [4] R. N. Carvalho, R. Haberlin, P. C. G. Costa, K. B. Laskey, and K.-C. Chang. Modeling a probabilistic ontology for maritime domain awareness.

In Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on, pages 1-8. IEEE, 2011. [5] M. Cavazzuti. Optimization methods: from theory to design scientific and technological aspects in mechanics. Springer Science & Business

Media, 2012. [6] T. Cook and D. Campbell. Quasi-experimentation design and analysis issues for field settings. Rand McNally, 1979. [7] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing techniques: An infrastructure and its potential impact.

Empirical Software Engineering, 10(4):405-435, 2005. [8] R. A. Fisher. The design of experiments. Oliver And Boyd; Edinburgh; London, 1937. [9] C. C. Insaurralde and E. Blasch. Veracity metrics for ontological decision-making support in avionics analytics. [10] C. M. Keet, A. Åawrynowicz, C. dAmato, A. Kalousis, P. Nguyen, R. Palma, R. Stevens, and M. Hilario. The data mining optimization

ontology. Web Semantics: Science, Services and Agents on the World Wide Web, 32:43 - 53, 2015. [11] R. Kitchin and G. McArdle. What makes big data, big data? exploring the ontological characteristics of 26 datasets. Big Data & Society,

3(1):2053951716631130, 2016. [12] K. Laskey, R. Haberlin, R. Carvalho, and P. Costa. Pr-owl 2 case study: A maritime domain probabilistic ontology. 808:76-83, 11 2011. [13] J. J. Louviere, T. Islam, N. Wasi, D. Street, and L. Burgess. Designing discrete choice experiments: Do optimal designs come at a price? [OpenAIRE]

Journal of Consumer Research, 35(2):360-375, 2008. [14] D. C. Montgomery. Design and Analysis of Experiments. John wiley & sons, 2017. [15] F. Natale, M. Gibin, A. Alessandrini, M. Vespe, and A. Paulrud. Mapping fishing e ort through ais data. PLOS ONE, 10(6):1-16, 06 2015. [16] P. Panov, L. Soldatova, and S. Dzˇeroski. Ontology of core data mining entities. Data Mining and Knowledge Discovery, 28(5):1222-1265,

Sep 2014. [17] K. Patroumpas, A. Artikis, N. Katzouris, M. Vodas, Y. Theodoridis, and N. Pelekis. Event recognition for maritime surveillance. In Proceedings

of the 18th International Conference on Extending Database Technology, EDBT 2015, Brussels, Belgium, March 23-27, 2015., pages 629-640,

2015. [18] J. Roy and M. Davenport. Exploitation of maritime domain ontologies for anomaly detection and threat analysis. In Waterside Security

Conference (WSS), 2010 International, pages 1-8. IEEE, 2010. [19] L. Snidaro, I. Visentini, and K. Bryan. Fusing uncertain knowledge and evidence for maritime situational awareness via markov logic networks.

Information Fusion, 21:159-172, 2015. [20] L. N. Soldatova and R. D. King. An ontology of scientific experiments. Journal of the Royal Society Interface, 3(11):795-803, 2006. [21] A. Van den Broek, R. Neef, P. Hanckmann, S. P. van Gosliga, and D. Van Halsema. Improving maritime situational awareness by fusing sensor

information and intelligence. In Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on, pages 1-8. IEEE,

16 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue