publication . Preprint . Article . 2018

Adaptive Compressive Tomography with No a priori Information

Ahn, D.; Teo, Y. S.; Jeong, H.; Bouchard, F.; Hufnagel, F.; Karimi, E.; Koutny, D.; Rehacek, J.; Hradil, Z.; Leuchs, G.; ...
Open Access
  • Published: 13 Dec 2018
Quantum state tomography is both a crucial component in the field of quantum information and computation, and a formidable task that requires an incogitably large number of measurement configurations as the system dimension grows. We propose and experimentally carry out an intuitive adaptive compressive tomography scheme, inspired by the traditional compressed-sensing protocol in signal recovery, that tremendously reduces the number of configurations needed to uniquely reconstruct any given quantum state without any additional a priori assumption whatsoever (such as rank information, purity, etc) about the state, apart from its dimension.
free text keywords: Quantum Physics
Funded by
  • Funder: European Commission (EC)
  • Project Code: 766970
  • Funding stream: H2020 | RIA
FET H2020FET OPEN: FET-Open research and innovation actions
Download fromView all 3 versions
Preprint . 2020
Provider: ZENODO
Article . 2019
Provider: MPG.PuRe
26 references, page 1 of 2

1) 1 col-

[1] I. Chuang and M. Nielsen, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

[2] M. G. A. Paris and J. Rˇ eha´cˇek, eds., Quantum State Estimation, Lect. Not. Phys., Vol. 649 (Springer, Berlin, 2004).

[3] Y. S. Teo, Introduction to Quantum-State Estimation (World Scientific Publishing Co., Singapore, 2015).

[4] H. Ha¨ffner, W. Ha¨nsel, C. F. Roos, J. Benhelm, D. Chek-al kar, M. Chwalla, T. Ko¨rber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gu¨hne, Du¨r W., and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438, 643 (2005).

[5] J. G. Titchener, M. Gra¨fe, R. Heilmann, A. S. Solntsev, A. Szameit, and A. A. Sukhorukov, “Scalable on-chip quantum state tomography,” NJP Quantum Inf. 4, 19 (2018). [OpenAIRE]

[6] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289 (2006).

[7] E. J. Cande`s and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406 (2006).

[8] E. J. Cande`s and B. Recht, “Exact matrix completion via convex optimization,” Found.Comput.Math. 9, 717 (2009).

[9] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Phys. Rev. Lett. 105, 150401 (2010).

[10] A. Kalev, R. L. Kosut, and I. H. Deutsch, “Quantum tomography protocols with positivity are compressed sensing protocols,” NJP Quantum Inf. 1, 15018 (2015). [OpenAIRE]

[11] A. Steffens, C. A. Riofro, W. McCutcheon, I. Roth, B. A. Bell, A. McMillan, M. S. Tame, J. G. Rarity, and J. Eisert, “Experimentally exploring compressed sensing quantum tomography,” Quantum Sci. Technol. 2, 025005 (2017).

[12] C. A. Riofr´ıo, D. Gross, S. T. Flammia, T. Monz, D. Nigg, R. Blatt, and J. Eisert, “Experimental quantum compressed sensing for a seven-qubit system,” Nat. Commun. 8, 15305 (2017). [OpenAIRE]

[13] C. H. Baldwin, I. H. Deutsch, and A. Kalev, “Strictly-complete measurements for bounded-rank quantum-state tomography,” Phys. Rev. A 93, 052105 (2016). [OpenAIRE]

[14] W. Pauli, Die allgemeinen Prinzipen der Wellenmechanik, Handbuch der Physik, edited by H. Geiger and K. Scheel, Vol. 24 (Springer-Verlag, Berlin, 1933).

26 references, page 1 of 2
Any information missing or wrong?Report an Issue