publication . Article . Preprint . 2020

Double-heterodyne probing for ultra-stable laser based on spectral hole burning in a rare-earth doped crystal

Galland, N.; Lučić, N; Zhang, S; Alvarez-Martinez, H; Le Targat, R; Ferrier, A; Goldner, P; Fang, B; Seidelin, S.; Le Coq, Y;
Open Access
  • Published: 23 Mar 2020
  • Country: France
International audience; We present an experimental technique for realizing a specific absorption spectral pattern in a rare-earth-doped crystal at cryogenic temperatures. This pattern is subsequently probed on two spectral channels simultaneously, thereby producing an error signal allowing frequency locking of a laser on the said spectral pattern. Appropriate combination of the two channels leads to a substantial reduction of the detection noise, paving the way to realizing an ultra-stable laser for which the detection noise can be made arbitrarily low when using multiple channels. We use such technique to realize a laser with a frequency instability of $\mathbf...
free text keywords: rare earth, nanoqtech, quantum technologies, [PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics], Physics - Optics, Physics - Applied Physics
Funded by
EC| NanOQTech
Nanoscale Systems for Optical Quantum Technologies
  • Funder: European Commission (EC)
  • Project Code: 712721
  • Funding stream: H2020 | RIA
FET H2020FET OPEN: FET-Open research projects
FET H2020FET OPEN: Nanoscale Systems for Optical Quantum Technologies
28 references, page 1 of 2

1Univ. Grenoble Alpes, CNRS, Grenoble INP and Institut Néel, 38000 Grenoble, France

2LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Paris, France

3Real Instituto y Observatorio de la Armada, San Fernando, Spain

4Chimie ParisTech, Université PSL, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France

5Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 933, 75005 Paris, France

6Institut Universitaire de France, 103 Boulevard Saint-Michel, F-75005 Paris, France

(Dated: March 31, 2020) [1] I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and

H. Katori, Nature Photonics 9, 185 (2015). [2] T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E.

Barrett, Nature Communications 6, 6896 (2015). [3] R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans,

M. Abgrall, J. Guéna, et al., New. J. Phys. 18, 113002

(2016). [4] M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley,

colodi, J. A. Sherman, et al., Nature Photonics 11, 48

(2017). [5] Q.-F. Chen, A. Troshyn, I. Ernsting, S. Kayser, S. Vasi-

lyev, A. Nevsky, and S. Schiller, Phys. Rev. Lett. 107,

223202 (2011). [6] S. Cook, T. Rosenband, and D. R. Leibrandt, Phys. Rev.

28 references, page 1 of 2
Any information missing or wrong?Report an Issue