publication . Article . 2020

Marginal Lands to Grow Novel Bio-Based Crops: A Plant Breeding Perspective.

Francesco Pancaldi; Luisa M. Trindade;
Open Access English
  • Published: 01 Mar 2020 Journal: Frontiers in Plant Science, volume 11 (eissn: 1664-462X, Copyright policy)
  • Publisher: Frontiers Media S.A.
  • Country: Netherlands
Abstract
<p>The biomass demand to fuel a growing global bio-based economy is expected to tremendously increase over the next decades, and projections indicate that dedicated biomass crops will satisfy a large portion of it. The establishment of dedicated biomass crops raises huge concerns, as they can subtract land that is required for food production, undermining food security. In this context, perennial biomass crops suitable for cultivation on marginal lands (MALs) raise attraction, as they could supply biomass without competing for land with food supply. While these crops withstand marginal conditions well, their biomass yield and quality do not ensure acceptable eco...
Subjects
free text keywords: Plant Science, Review, bio-based economy, bio-based crops, perennial lignocellulosic crops, marginal lands, plant breeding, breeding tools, Plant culture, SB1-1110
Related Organizations
Funded by
EC| MAGIC
Project
MAGIC
Marginal lands for Growing Industrial Crops: Turning a burden into an opportunity
  • Funder: European Commission (EC)
  • Project Code: 727698
  • Funding stream: H2020 | RIA
Communities
SDSN - GreeceSustainable Development Projects: Marginal lands for Growing Industrial Crops: Turning a burden into an opportunity
348 references, page 1 of 24

Acharya B. S.Blanco-Canqui H. (2018). Lignocellulosic-based bioenergy and water quality parameters: a review. GCB Bioenergy 10 504–533. 10.1111/gcbb.12508 [OpenAIRE] [DOI]

Acquaah G. (2012). Breeding Cross-Pollinated Species Principles of Plant Genetics and Breeding. Hoboken, NJ: John Wiley & Sons, Ltd, 337–354.

Acquadro A.Portis E.Lee D.Donini P.Lanteri S. (2005). Development and characterization of microsatellite markers in Cynara cardunculus L. Genome 48 217–225. 10.1139/g04-111 15838543 [OpenAIRE] [PubMed] [DOI]

Allwright M. R.Taylor G. (2016). Molecular breeding for improved second generation bioenergy crops. Trends Plant Sci. 21 43–54. 10.1016/j.tplants.2015.10.002 26541073 [OpenAIRE] [PubMed] [DOI]

Amaducci S.Facciotto G.Bergante S.Perego A.Serra P.Ferrarini A. (2017). Biomass production and energy balance of herbaceous and woody crops on marginal soils in the Po valley. GCB Bioenergy 9 31–45. 10.1111/gcbb.12341 [OpenAIRE] [DOI]

Amelework B.Shimelis H.Tongoona P.Laing M. (2015). Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: a review. Afr. J. Agric. Res. 10 3029–3040. 10.5897/ajar2015.9595 [OpenAIRE] [DOI]

Ananda N.Vadlani P. V.Prasad P. V. (2011). Evaluation of drought and heat stressed grain sorghum (Sorghum bicolor) for ethanol production. Ind. Crops Prod. 33 779–782. 10.1016/j.indcrop.2011.01.007 [OpenAIRE] [DOI]

Anderson-Teixeira K. J.Davis S. C.Masters M. D.Delucia E. H. (2009). Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1 75–96. 10.1111/j.1757-1707.2008.01001.x [OpenAIRE] [DOI]

Angelini L. G.Ceccarini L.O Di Nasso N. N.Bonari E. (2009). Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use. Biomass Bioenergy 33 810–816. 10.1016/j.biombioe.2008.12.004 [OpenAIRE] [DOI]

Angeli ni L. G.Lazzeri A.Levita G.Fontanelli D.Bozzi C. (2000). Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind. Crops Prod. 11 145–161. 10.1016/s0926-6690(99)00059-x [OpenAIRE] [DOI]

Atienza S.Satovic Z.Petersen K.Dolstra O.Martin A. (2002). Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor. Appl. Genet. 105 946–952. 10.1007/s00122-002-0956-7 12582920 [OpenAIRE] [PubMed] [DOI]

Atienza S. G.Satovic Z.Petersen K. K.Dolstra O.Martin A. (2003a). Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theor. Appl. Genet. 107 123–129. 10.1007/s00122-003-1220-5 12835938 [OpenAIRE] [PubMed] [DOI]

Atienza S. G.Satovic Z.Petersen K. K.Dolstra O.Martin A. (2003b). Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theor. Appl. Genet. 107 857–863. 10.1007/s00122-003-1218-z 12955211 [OpenAIRE] [PubMed] [DOI]

Aylott M. J.Casella E.Tubby I.Street N.Smith P.Taylor G. (2008). Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol. 178 358–370. 10.1111/j.1469-8137.2008.02396.x 18331429 [OpenAIRE] [PubMed] [DOI]

Bacci L.Baronti S.Predieri S.Di Virgilio N. (2009). Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Ind. Crops Prod. 29 480–484. 10.1016/j.indcrop.2008.09.005 [OpenAIRE] [DOI]

348 references, page 1 of 24
Abstract
<p>The biomass demand to fuel a growing global bio-based economy is expected to tremendously increase over the next decades, and projections indicate that dedicated biomass crops will satisfy a large portion of it. The establishment of dedicated biomass crops raises huge concerns, as they can subtract land that is required for food production, undermining food security. In this context, perennial biomass crops suitable for cultivation on marginal lands (MALs) raise attraction, as they could supply biomass without competing for land with food supply. While these crops withstand marginal conditions well, their biomass yield and quality do not ensure acceptable eco...
Subjects
free text keywords: Plant Science, Review, bio-based economy, bio-based crops, perennial lignocellulosic crops, marginal lands, plant breeding, breeding tools, Plant culture, SB1-1110
Related Organizations
Funded by
EC| MAGIC
Project
MAGIC
Marginal lands for Growing Industrial Crops: Turning a burden into an opportunity
  • Funder: European Commission (EC)
  • Project Code: 727698
  • Funding stream: H2020 | RIA
Communities
SDSN - GreeceSustainable Development Projects: Marginal lands for Growing Industrial Crops: Turning a burden into an opportunity
348 references, page 1 of 24

Acharya B. S.Blanco-Canqui H. (2018). Lignocellulosic-based bioenergy and water quality parameters: a review. GCB Bioenergy 10 504–533. 10.1111/gcbb.12508 [OpenAIRE] [DOI]

Acquaah G. (2012). Breeding Cross-Pollinated Species Principles of Plant Genetics and Breeding. Hoboken, NJ: John Wiley & Sons, Ltd, 337–354.

Acquadro A.Portis E.Lee D.Donini P.Lanteri S. (2005). Development and characterization of microsatellite markers in Cynara cardunculus L. Genome 48 217–225. 10.1139/g04-111 15838543 [OpenAIRE] [PubMed] [DOI]

Allwright M. R.Taylor G. (2016). Molecular breeding for improved second generation bioenergy crops. Trends Plant Sci. 21 43–54. 10.1016/j.tplants.2015.10.002 26541073 [OpenAIRE] [PubMed] [DOI]

Amaducci S.Facciotto G.Bergante S.Perego A.Serra P.Ferrarini A. (2017). Biomass production and energy balance of herbaceous and woody crops on marginal soils in the Po valley. GCB Bioenergy 9 31–45. 10.1111/gcbb.12341 [OpenAIRE] [DOI]

Amelework B.Shimelis H.Tongoona P.Laing M. (2015). Physiological mechanisms of drought tolerance in sorghum, genetic basis and breeding methods: a review. Afr. J. Agric. Res. 10 3029–3040. 10.5897/ajar2015.9595 [OpenAIRE] [DOI]

Ananda N.Vadlani P. V.Prasad P. V. (2011). Evaluation of drought and heat stressed grain sorghum (Sorghum bicolor) for ethanol production. Ind. Crops Prod. 33 779–782. 10.1016/j.indcrop.2011.01.007 [OpenAIRE] [DOI]

Anderson-Teixeira K. J.Davis S. C.Masters M. D.Delucia E. H. (2009). Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1 75–96. 10.1111/j.1757-1707.2008.01001.x [OpenAIRE] [DOI]

Angelini L. G.Ceccarini L.O Di Nasso N. N.Bonari E. (2009). Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use. Biomass Bioenergy 33 810–816. 10.1016/j.biombioe.2008.12.004 [OpenAIRE] [DOI]

Angeli ni L. G.Lazzeri A.Levita G.Fontanelli D.Bozzi C. (2000). Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind. Crops Prod. 11 145–161. 10.1016/s0926-6690(99)00059-x [OpenAIRE] [DOI]

Atienza S.Satovic Z.Petersen K.Dolstra O.Martin A. (2002). Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor. Appl. Genet. 105 946–952. 10.1007/s00122-002-0956-7 12582920 [OpenAIRE] [PubMed] [DOI]

Atienza S. G.Satovic Z.Petersen K. K.Dolstra O.Martin A. (2003a). Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theor. Appl. Genet. 107 123–129. 10.1007/s00122-003-1220-5 12835938 [OpenAIRE] [PubMed] [DOI]

Atienza S. G.Satovic Z.Petersen K. K.Dolstra O.Martin A. (2003b). Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theor. Appl. Genet. 107 857–863. 10.1007/s00122-003-1218-z 12955211 [OpenAIRE] [PubMed] [DOI]

Aylott M. J.Casella E.Tubby I.Street N.Smith P.Taylor G. (2008). Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol. 178 358–370. 10.1111/j.1469-8137.2008.02396.x 18331429 [OpenAIRE] [PubMed] [DOI]

Bacci L.Baronti S.Predieri S.Di Virgilio N. (2009). Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Ind. Crops Prod. 29 480–484. 10.1016/j.indcrop.2008.09.005 [OpenAIRE] [DOI]

348 references, page 1 of 24
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue