Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air

Article OPEN
Dagata, J. A. ; Schneir, J. ; Harary, H. H. ; Evans, C. J. ; Postek, M. T. ; Bennett, J. (1990)

The chemical modification of hydrogen‐passivated n‐Si (111) surfaces by a scanning tunneling microscope (STM) operating in air is reported. The modified surface regions have been characterized by STM spectroscopy, scanning electron microscopy (SEM), time‐of‐flight secondary‐ion mass spectrometry (TOF SIMS), and chemical etch/Nomarski microscopy. Comparison of STM images with SEM, TOF SIMS, and optical information indicates that the STM contrast mechanism of these features arises entirely from electronic structure effects rather than from topographical differences between the modified and unmodified substrate. No surface modification was observed in a nitrogen ambient. Direct writing of features with 100 nm resolution was demonstrated. The permanence of these features was verified by SEM imaging after three months storage in air. The results suggest that field‐enhanced oxidation/diffusion occurs at the tip‐substrate interface in the presence of oxygen.
  • Metrics
    0
    views in OpenAIRE
    26
    views in local repository
    24
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    ZENODO 13 12
    Zenodo 13 12
Share - Bookmark

  • Download from
    ZENODO via ZENODO (Article, 1990)
  • Cite this publication