publication . Article . Other literature type . Preprint . 2020

Experimental demonstration of an electrostatic orbital angular momentum sorter for electrons

Tavabi, Amir; Rosi, Paolo; Pozzi, Giulio; Roncaglia, Alberto; Frabboni, Stefano; Rotunno, Enzo; Lu, Peng-Han; Nijiland, Robert; Tiemeijer, Peter; Karimi, Ebrahim; ...
Open Access
  • Published: 20 May 2020
  • Publisher: Zenodo
We report the first experimental demonstration of an electrostatic electron orbital angular momentum (OAM) sorter, which can be used to analyze the OAM states of electrons in a transmission electron microscope. We verify the sorter functionality for several electron beams possessing different superpositions of OAM states, and use it to record the electron beams OAM spectra. Our current electrostatic OAM sorter has an OAM resolution of 2 in the units of h/bar - the reduced Planck constant. It is expected to increase the OAM resolution of the sorter to the optimal resolution of 1 in the future via fine control of the sorting phase elements.
arXiv: Physics::OpticsPhysics::Space Physics
free text keywords: Q-sort, Physics - Instrumentation and Detectors
Funded by
  • Funder: European Commission (EC)
  • Project Code: 766970
  • Funding stream: H2020 | RIA
Validated by funder
FET H2020FET OPEN: FET-Open research and innovation actions
Download fromView all 5 versions
Other literature type . 2020
Provider: Datacite
Other literature type . 2020
Provider: Datacite

[1] Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao, S. Xie, P. Purohit, M. W. Tate, J. Park, S. M. Gruner, V. Elser and D. A. Muller, Nature 559, 343-349 (2018).

[2] Y. Yang, C.-C. Chen, M. C. Scott, C. Ophus, R. Xu, A. Pryor, L. Wu, F. Sun, W. Theis, J. Zhou, M. Eisenbach, P. R. C. Kent, R. F. Sabirianov, H. Zeng, P. Ercius and J. Miao, Nature 542, 75-79 (2017).

[3] O. L. Krivanek, T. C. Lovejoy, N. Dellby, T. Aoki, R. W. Carpenter, P. Rez, E. Soignard, J. Zhu, P. E. Batson, M. J. Lagos, R. F. Egerton and P. A. Crozier, Nature 514, 209-212 (2014).

[4] M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius and K. Urban, Nature 392, 768 (1998). [5]. O. Krivanek, N. Dellby and A. Lupini, Ultramicroscopy 78, 1-11 (1999). [6]. P. Hawkes, Phil. Trans. R. Soc. A 367, 3637-3664 (2009). [7]. O. Scherzer, Zeitschrift für Physik A Hadrons and Nuclei 101, 593-603(1936).

[8] H. Rose, Journal of Electron Microscopy 58, 77-85 (2009).

[9] G. C. Berkhout, M. P. Lavery J. Courtial, M.W. Beijersbergen, and M. J. Padgett Phys. Rev. Lett. 105, 153601 (2010).

[10] B. McMorran, T.R. Harvey and M.P.J. Lavery, New Journal of Physics 19, 023053 (2017).

[11] V. Grillo, A.H. Tavabi, F. Venturi, H. Larocque, R. Balboni, G.C.Gazzadi, S. Frabboni, P.H. Lu, E. Mafakheri, F. Bouchard, R. E.Dunin-Borkowski, R. W. Boyd, M. P. J. Lavery, M. J. Padgett, and E. Karimi Nature Comm. 8, 15536 (2017).

[12] K. Saitoh, Y. Hasegawa, K. Hirakawa, N. Tanaka and M. Uchida, Physical Review Letters 111, 074801 (2013).

[13] L. Clark, A. Bechè, G. Guzzinati and J. Verbeeck, Physical Review A 89, 053818 (2014).

[14] G. Guzzinati, L. Clark, A. Béché and J. Verbeeck, Physical Review A 89, 025803 (2014).

[15] K.Y.Bliokh, Y.P.Bliokh, S.Savel'ev, F.Nori, Physical Review Letters 99(2007)190404.

Any information missing or wrong?Report an Issue