publication . Article . Other literature type . 2019

Marginal Agricultural Land Low-Input Systems for Biomass Production

Moritz Von Cossel; Iris Lewandowski; Berien Elbersen; Igor Staritsky; Michiel Van Eupen; Yasir Iqbal; Stefan Mantel; Danilo Scordia; Giorgio Testa; Salvatore Luciano Cosentino; ...
Open Access English
  • Published: 14 Aug 2019
  • Publisher: Molecular Diversity Preservation International (MDPI)
Abstract
This study deals with approaches for a social-ecological friendly European bioeconomy based on biomass from industrial crops cultivated on marginal agricultural land. The selected crops to be investigated are: Biomass sorghum, camelina, cardoon, castor, crambe, Ethiopian mustard, giant reed, hemp, lupin, miscanthus, pennycress, poplar, reed canary grass, safflower, Siberian elm, switchgrass, tall wheatgrass, wild sugarcane, and willow. The research question focused on the overall crop growth suitability under low-input management. The study assessed: (i) How the growth suitability of industrial crops can be defined under the given natural constraints of European...
Subjects
free text keywords: bioeconomy; biomass; bioenergy; industrial crop; perennial crop; low-input agriculture; marginal land; agriculture, bioeconomy, bio-based industry, biomass, bioenergy, industrial crop, perennial crop, low-input agriculture, marginal land, MALLIS, sustainable agriculture, Bio-based industry; Bioeconomy; Bioenergy; Biomass; Industrial crop; Low-input agriculture; MALLIS; Marginal land; Perennial crop; Sustainable agriculture, [SDV]Life Sciences [q-bio], [SDE]Environmental Sciences, bioeconomy;bio-based industry;biomass;bioenergy;industrial crop;perennial crop;low-input agriculture;marginal land;MALLIS;sustainable agriculture, General Computer Science, Agriculture, business.industry, business, Crop, Engineering, Miscanthus, biology.organism_classification, biology, Control engineering, Agricultural land, Agroforestry
Funded by
EC| GRACE
Project
GRACE
GRowing Advanced industrial Crops on marginal lands for biorEfineries
  • Funder: European Commission (EC)
  • Project Code: 745012
  • Funding stream: H2020 | BBI-IA-DEMO
,
EC| MAGIC
Project
MAGIC
Marginal lands for Growing Industrial Crops: Turning a burden into an opportunity
  • Funder: European Commission (EC)
  • Project Code: 727698
  • Funding stream: H2020 | RIA
Communities
Agricultural and Food Sciences
Socio-economic impact of digitalisation in rural areas
147 references, page 1 of 10

1. Sta as, L.; Gustavsson, M.; McCormick, K. Strategies and policies for the bioeconomy and bio-based economy: An analysis of o cial national approaches. Sustainability 2013, 5, 2751-2769. [CrossRef] [OpenAIRE]

2. Lewandowski, I. Securing a sustainable biomass supply in a growing bioeconomy. Glob. Food Secur. 2015, 6, 34-42. [CrossRef]

3. Scarlat, N.; Dallemand, J.F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3-34. [CrossRef]

4. Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457-472. [CrossRef] [OpenAIRE]

5. Fernando, A.L.; Boléo, S.; Barbosa, B.; Costa, J.; Duarte, M.P.; Monti, A. Perennial Grass Production Opportunities on Marginal Mediterranean Land. Bioenergy Res. 2015, 8, 1523-1537. [CrossRef]

6. Biala, K.; Terres, J.M.; Pointereau, P.; Paracchini, M.L. Low Input Farming Systems: An opportunity to develop sustainable agriculture. Proc. JRC Summer Univ. Ranco. 2007, 2-5. [CrossRef]

7. Lewandowski, I.; Lippe, M.; Castro-Montoya, J.; Dickhöfer, U.; Langenberger, G.; Pucher, J.; Schließmann, U.; Derwenskus, F.; Schmid-Staiger, U.; Lippert, C. Primary Production. In Bioeconomy; Springer: Cham, Switzerland, 2018; pp. 95-175.

8. Pulighe, G.; Bonati, G.; Fabiani, S.; Barsali, T.; Lupia, F.; Vanino, S.; Nino, P.; Arca, P.; Roggero, P.P. Assessment of the Agronomic Feasibility of Bioenergy Crop Cultivation on Marginal and Polluted Land: A GIS-Based Suitability Study from the Sulcis Area, Italy. Energies 2016, 9, 895. [CrossRef] [OpenAIRE]

9. Dale, V.H.; Kline, K.L.; Wiens, J.; Fargione, J. Biofuels: Implications for Land Use and Biodiversity; Ecological Society of America: Washington, DC, USA, 2010.

10. Liu, T.T.; McConkey, B.G.; Ma, Z.Y.; Liu, Z.G.; Li, X.; Cheng, L.L. Strengths, Weaknessness, Opportunities and Threats Analysis of Bioenergy Production on Marginal Land. Energy Procedia 2011, 5, 2378-2386. [CrossRef]

11. Zhuang, D.; Jiang, D.; Liu, L.; Huang, Y. Assessment of bioenergy potential on marginal land in China. Renew. Sustain. Energy Rev. 2011, 15, 1050-1056. [CrossRef]

12. Elbersen, B.; Van Verzandvoort, M.; Boogaard, S.; Mucher, S.; Cicarelli, T.; Elbersen, W.; Mantel, S.; Bai, Z.; MCallum, I.; Iqbal, Y.; et al. Definition and Classification of Marginal Lands Suitable for Industrial Crops in Europe (EU Deliverable); WUR: Wageningen, The Netherlands, 2018; p. 44.

13. Edrisi, S.A.; Abhilash, P.C. Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario. Renew. Sustain. Energy Rev. 2016, 54, 1537-1551. [CrossRef] [OpenAIRE]

14. Folke, C. Resilience: The emergence of a perspective for social-ecological systems analyses. Glob. Environ. Chang. 2006, 16, 253-267. [CrossRef]

15. Elmqvist, T.; Folke, C.; Nyström, M.; Peterson, G.; Bengtsson, J.; Walker, B.; Norberg, J. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003, 1, 488-494. [CrossRef] [OpenAIRE]

147 references, page 1 of 10
Abstract
This study deals with approaches for a social-ecological friendly European bioeconomy based on biomass from industrial crops cultivated on marginal agricultural land. The selected crops to be investigated are: Biomass sorghum, camelina, cardoon, castor, crambe, Ethiopian mustard, giant reed, hemp, lupin, miscanthus, pennycress, poplar, reed canary grass, safflower, Siberian elm, switchgrass, tall wheatgrass, wild sugarcane, and willow. The research question focused on the overall crop growth suitability under low-input management. The study assessed: (i) How the growth suitability of industrial crops can be defined under the given natural constraints of European...
Subjects
free text keywords: bioeconomy; biomass; bioenergy; industrial crop; perennial crop; low-input agriculture; marginal land; agriculture, bioeconomy, bio-based industry, biomass, bioenergy, industrial crop, perennial crop, low-input agriculture, marginal land, MALLIS, sustainable agriculture, Bio-based industry; Bioeconomy; Bioenergy; Biomass; Industrial crop; Low-input agriculture; MALLIS; Marginal land; Perennial crop; Sustainable agriculture, [SDV]Life Sciences [q-bio], [SDE]Environmental Sciences, bioeconomy;bio-based industry;biomass;bioenergy;industrial crop;perennial crop;low-input agriculture;marginal land;MALLIS;sustainable agriculture, General Computer Science, Agriculture, business.industry, business, Crop, Engineering, Miscanthus, biology.organism_classification, biology, Control engineering, Agricultural land, Agroforestry
Funded by
EC| GRACE
Project
GRACE
GRowing Advanced industrial Crops on marginal lands for biorEfineries
  • Funder: European Commission (EC)
  • Project Code: 745012
  • Funding stream: H2020 | BBI-IA-DEMO
,
EC| MAGIC
Project
MAGIC
Marginal lands for Growing Industrial Crops: Turning a burden into an opportunity
  • Funder: European Commission (EC)
  • Project Code: 727698
  • Funding stream: H2020 | RIA
Communities
Agricultural and Food Sciences
Socio-economic impact of digitalisation in rural areas
147 references, page 1 of 10

1. Sta as, L.; Gustavsson, M.; McCormick, K. Strategies and policies for the bioeconomy and bio-based economy: An analysis of o cial national approaches. Sustainability 2013, 5, 2751-2769. [CrossRef] [OpenAIRE]

2. Lewandowski, I. Securing a sustainable biomass supply in a growing bioeconomy. Glob. Food Secur. 2015, 6, 34-42. [CrossRef]

3. Scarlat, N.; Dallemand, J.F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3-34. [CrossRef]

4. Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457-472. [CrossRef] [OpenAIRE]

5. Fernando, A.L.; Boléo, S.; Barbosa, B.; Costa, J.; Duarte, M.P.; Monti, A. Perennial Grass Production Opportunities on Marginal Mediterranean Land. Bioenergy Res. 2015, 8, 1523-1537. [CrossRef]

6. Biala, K.; Terres, J.M.; Pointereau, P.; Paracchini, M.L. Low Input Farming Systems: An opportunity to develop sustainable agriculture. Proc. JRC Summer Univ. Ranco. 2007, 2-5. [CrossRef]

7. Lewandowski, I.; Lippe, M.; Castro-Montoya, J.; Dickhöfer, U.; Langenberger, G.; Pucher, J.; Schließmann, U.; Derwenskus, F.; Schmid-Staiger, U.; Lippert, C. Primary Production. In Bioeconomy; Springer: Cham, Switzerland, 2018; pp. 95-175.

8. Pulighe, G.; Bonati, G.; Fabiani, S.; Barsali, T.; Lupia, F.; Vanino, S.; Nino, P.; Arca, P.; Roggero, P.P. Assessment of the Agronomic Feasibility of Bioenergy Crop Cultivation on Marginal and Polluted Land: A GIS-Based Suitability Study from the Sulcis Area, Italy. Energies 2016, 9, 895. [CrossRef] [OpenAIRE]

9. Dale, V.H.; Kline, K.L.; Wiens, J.; Fargione, J. Biofuels: Implications for Land Use and Biodiversity; Ecological Society of America: Washington, DC, USA, 2010.

10. Liu, T.T.; McConkey, B.G.; Ma, Z.Y.; Liu, Z.G.; Li, X.; Cheng, L.L. Strengths, Weaknessness, Opportunities and Threats Analysis of Bioenergy Production on Marginal Land. Energy Procedia 2011, 5, 2378-2386. [CrossRef]

11. Zhuang, D.; Jiang, D.; Liu, L.; Huang, Y. Assessment of bioenergy potential on marginal land in China. Renew. Sustain. Energy Rev. 2011, 15, 1050-1056. [CrossRef]

12. Elbersen, B.; Van Verzandvoort, M.; Boogaard, S.; Mucher, S.; Cicarelli, T.; Elbersen, W.; Mantel, S.; Bai, Z.; MCallum, I.; Iqbal, Y.; et al. Definition and Classification of Marginal Lands Suitable for Industrial Crops in Europe (EU Deliverable); WUR: Wageningen, The Netherlands, 2018; p. 44.

13. Edrisi, S.A.; Abhilash, P.C. Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario. Renew. Sustain. Energy Rev. 2016, 54, 1537-1551. [CrossRef] [OpenAIRE]

14. Folke, C. Resilience: The emergence of a perspective for social-ecological systems analyses. Glob. Environ. Chang. 2006, 16, 253-267. [CrossRef]

15. Elmqvist, T.; Folke, C.; Nyström, M.; Peterson, G.; Bengtsson, J.; Walker, B.; Norberg, J. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003, 1, 488-494. [CrossRef] [OpenAIRE]

147 references, page 1 of 10
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2019

Marginal Agricultural Land Low-Input Systems for Biomass Production

Moritz Von Cossel; Iris Lewandowski; Berien Elbersen; Igor Staritsky; Michiel Van Eupen; Yasir Iqbal; Stefan Mantel; Danilo Scordia; Giorgio Testa; Salvatore Luciano Cosentino; ...