OpenAIRE's DOIBoost - Boosting CrossRef for Research

Preprint English OPEN
La Bruzzo, Sandro ; Manghi, Paolo ; Mannocci, Andrea (2018)

Research in information science and scholarly communication strongly relies on the availability of openly accessible datasets of scholarly entities metadata and, where possible, their relative payloads. Since such metadata information is scattered across diverse, freely accessible, online resources (e.g. CrossRef, ORCID), researchers in this domain are doomed to struggle with metadata integration problems, in order to produce custom datasets of undocumented and rather obscure provenance. This practice leads to waste of time, duplication of efforts, and typically infringes open science best practices of transparency and reproducibility of science. In this article, we describe how to generate DOIBoost, a metadata collection that enriches CrossRef (Nov 2018) with inputs from Microsoft Academic Graph (May 2018), ORCID (Oct 2018), and Unpaywall (Jun 2018) for the purpose of supporting high-quality and robust research experiments, saving times to researchers and enabling their comparison. To this aim, we describe the dataset value and its schema, analyse its actual content, and share the software Toolkit and experimental workflow required to reproduce it. The DOIBoost dataset and Software Toolkit are made openly available via Zenodo.org. DOIBoost will become an input source to the OpenAIRE information graph.
  • Metrics
    0
    views in OpenAIRE
    1,248
    views in local repository
    568
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    ZENODO 624 284
    Zenodo 624 284
Share - Bookmark