publication . Article . 2017

Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals

Olivier Gobron; Kwangyun Jung; N. Galland; K. Predehl; R. Le Targat; Alban Ferrier; Philippe Goldner; S. Seidelin; Y. Le Coq;
Open Access English
  • Published: 26 Jun 2017
  • Publisher: HAL CCSD
Abstract
International audience; Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from the center of the inhomogeneous absorption pro...
Persistent Identifiers
Subjects
arXiv: Physics::Optics
free text keywords: [PHYS]Physics [physics], [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat], nanoqtech, metrology, rare earth, laser stabilization, quantum technologies, Atomic and Molecular Physics, and Optics, [ PHYS ] Physics [physics], Laser, law.invention, law, Optics, business.industry, business, Heterodyne, Optical power, Dephasing, Spectral hole burning, Photonics, Materials science, Fiber laser, Phase noise
Funded by
EC| NanOQTech
Project
NanOQTech
Nanoscale Systems for Optical Quantum Technologies
  • Funder: European Commission (EC)
  • Project Code: 712721
  • Funding stream: H2020 | RIA
Validated by funder
Communities
FET H2020FET OPEN: FET-Open research projects
FET H2020FET OPEN: Nanoscale Systems for Optical Quantum Technologies
42 references, page 1 of 3

O. Gobron,1 K. Jung,1, 2 N. Galland,3 K. Predehl,1, 4 R. Le

Targat,1 A. Ferrier,5, 6 P. Goldner,5 S. Seidelin,3, 7 and Y. Le Coq1

1LNE-SYRTE, Observatoire de Paris, PSL Research University,

CNRS, Sorbonne Universites, UPMC Univ. Paris 06,

61 avenue de l'Observatoire, 75014 Paris, France

2Currently with Samsung Electro-Mechanics, 16674 Suwon, South Korea

3Univ. Grenoble Alpes and CNRS, Inst. NEEL, F-38042 Grenoble, France

4Currently with Fraunhofer IPM, Heidenhofstr. 8, D-79110, Freiburg

5PSL Research University, Chimie ParisTech, CNRS,

Institut de Recherche de Chimie Paris, 75005, Paris, France

6Sorbonne Universites, UPMC Universite Paris 06, 75005, Paris, France

7Institut Universitaire de France, 103 Boulevard Saint-Michel, F-75005 Paris, France [3] C. Lisdat, G. Grosche, N. Quintin, C. Shi, S.M.F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S.

fundamental science," Nat. Commun. 7, 12443 (2016). [4] I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, \Cryogenic optical lattice clocks," Nat. Photonics 9,

185-189 (2015). [5] T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S.

Safronova, G. F. Strouse, W. L. Tew, and J. Ye, \Systematic evaluation of an atomic clock at 2x10 18 total uncertainty,"

42 references, page 1 of 3
Any information missing or wrong?Report an Issue