Share - Bookmark
-
- Download from
-
-
- Funded by
-
[1] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Ferna`ndezMoctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The dataflow model: A practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing. Proc. VLDB Endow., 8(12):1792-1803, Aug. 2015.
[2] Flink. Apache Flink website. https://flink.apache.org/.
[3] Flink. Flink streaming examples, 2015. [Online; accessed 16-November2016].
[7] E. A. Lee and T. M. Parks. Dataflow process networks. Proc. of the IEEE, 83(5):773-801, 1995.
[8] C. Misale, M. Drocco, M. Aldinucci, and G. Tremblay. A comparison of big data frameworks on a layered dataflow model. In Proc. of HLPP2016: Intl. Workshop on High-Level Parallel Programming, pages 1-19, Muenster, Germany, July 2016. arXiv.org.
[9] C. Misale, M. Drocco, M. Aldinucci, and G. Tremblay. A comparison of big data frameworks on a layered dataflow model. Parallel Processing Letters, 27(01):1740003, 2017.
[10] M. A. U. Nasir, G. D. F. Morales, D. Garc´ıa-Soriano, N. Kourtellis, and M. Serafini. The power of both choices: Practical load balancing for distributed stream processing engines. CoRR, abs/1504.00788, 2015.
[11] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Faulttolerant Abstraction for In-memory Cluster Computing. In Proc. of the 9th USENIX Conference on Networked Systems Design and Implementation, NSDI'12, Berkeley, CA, USA, 2012. USENIX.