Clustering Trajectories by Relevant Parts for Air Traffic Analysis

Article English OPEN
Andrienko, G.; Andrienko, N.; Fuchs, G.; Cordero Garcia, J. M.;
(2017)
  • Related identifiers: doi: 10.1109/TVCG.2017.2744322
  • Subject: Visualization | Clustering algorithms | Algorithm design and analysis | Three-dimensional displays | TL | Guidelines | QA75 | Data visualization | Trajectory

Clustering of trajectories of moving objects by similarity is an important technique in movement analysis. Existing distance functions assess the similarity between trajectories based on properties of the trajectory points or segments. The properties may include the spa... View more
  • References (53)
    53 references, page 1 of 6

    [1] 30,000 flights covering 25 million miles: Beautiful video reveals an entire day of european air travel in just two minutes. http://www.dailymail. co.uk/sciencetech/article-2579190. Accessed: 24.03.2017.

    [2] FlightAware. http://www.flightaware.com. Accessed: 24.03.2017.

    [3] FlightRadar24. https://www.flightradar24.com. Accessed: 24.03.2017.

    [4] Heathrow wind direction. http://www.heathrow.com/noise/ heathrow-operations/wind-direction. Accessed: 24.03.2017.

    [5] London stansted airport. https://skyvector.com/airport/EGSS/ London-Stansted-Airport. Accessed: 24.03.2017.

    [6] NASA World Wind. https://worldwind.arc.nasa.gov/. Accessed: 24.03.2017.

    [7] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization of time-oriented data. Springer Science & Business Media, 2011.

    [8] G. H. Albrecht, H. T. Lee, and A. Pang. Visual analysis of air traffic data using aircraft density and conflict probability. In Infotech@ Aerospace 2012. 2012.

    [9] H. Alt and M. Godau. Computing the Frchet distance between two polygonal curves. International Journal of Computational Geometry and Applications, 05(01n02):75-91, 1995. doi: 10.1142/S0218195995000064

    [10] G. Andrienko, N. Andrienko, P. Bak, D. Keim, and S. Wrobel. Visual Analytics of Movement. Springer, 2013. doi: 10.1007/978-3-642-37583-5

  • Metrics
Share - Bookmark