publication . Article . Other literature type . 2019

Extracellular Vesicles–Encapsulated MicroRNA-125b Produced in Genetically Modified Mesenchymal Stromal Cells Inhibits Hepatocellular Carcinoma Cell Proliferation

Alessandra Magenta; Giuliana Di Rocco; Gabriele Toietta; Silvia Baldari; Mario Picozza;
Open Access
  • Published: 03 Dec 2019 Journal: Cells, volume 8, page 1,560 (eissn: 2073-4409, Copyright policy)
  • Publisher: MDPI AG
Abstract
<jats:p>Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and one of the prominent causes of cancer mortality, leading to approximately 780,000 deaths per year worldwide. Down-regulation of microRNA-125b (miR-125b) is a prognostic indicator in HCC patients. Conversely, over-expression of miR-125b in HCC cells induces cell cycle arrest, inhibits proliferation, migration and invasion. Extracellular vesicles (EVs) function as intercellular messengers transferring proteins, RNAs, DNAs, carbohydrates, and lipids. Since EVs protect their cargo from degradation, delivery of therapeutic bioactive molecules, in particular miRNAs, through EV...
Subjects
free text keywords: hepatocellular carcinoma, microRNAs, extracellular vesicles, cell proliferation, adipose tissue-derived stromal cells, Article, Stromal cell, Cell cycle checkpoint, In vitro, Cell growth, Mesenchymal stem cell, Cancer research, microRNA, Viral vector, Intracellular, Biology
Related Organizations
Download fromView all 5 versions
Cells
Article . 2019
Provider: Crossref
Cells
Article
Provider: UnpayWall
ZENODO
Article . 2019
Provider: ZENODO
80 references, page 1 of 6

Hammond, S.M.. An overview of microRNAs. Adv. Drug Deliv. Rev.. 2015; 87: 3-14 [OpenAIRE] [PubMed] [DOI]

Croce, C.M.. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet.. 2009; 10: 704-714 [OpenAIRE] [PubMed] [DOI]

Daugaard, I., Hansen, T.B.. Biogenesis and function of Ago-Associated RNAs. Trends Genet.. 2017; 33: 208-219 [OpenAIRE] [PubMed] [DOI]

Yu, X., Odenthal, M., Fries, J.W.. Exosomes as miRNA carriers: Formation-function-future. Int. J. Mol. Sci.. 2016; 17 [OpenAIRE] [DOI]

Kalra, H., Drummen, G.P., Mathivanan, S.. Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci.. 2016; 17 [OpenAIRE] [PubMed] [DOI]

Doyle, L.M., Wang, M.Z.. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019; 8 [OpenAIRE] [DOI]

Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G.K.. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018; 7: 1535750 [OpenAIRE] [PubMed] [DOI]

Villarroya-Beltri, C., Baixauli, F., Gutiérrez-Vázquez, C., Sánchez-Madrid, F., Mittelbrunn, M.. Sorting it out: Regulation of exosome loading. Semin. Cancer Biol.. 2014; 28: 3-13 [OpenAIRE] [PubMed] [DOI]

Munson, P., Shukla, A.. Exosomes: Potential in cancer diagnosis and therapy. Medicines. 2015; 2: 310-327 [OpenAIRE] [PubMed] [DOI]

Hosseinahli, N., Aghapour, M., Duijf, P.H.G., Baradaran, B.. Treating cancer with microRNA replacement therapy: A literature review. J. Cell Physiol.. 2018; 233: 5574-5588 [OpenAIRE] [PubMed] [DOI]

Di Rocco, G., Baldari, S., Toietta, G.. Exosomes and other extracellular vesicles-mediated microRNA delivery for cancer therapy. Transl. Cancer Res.. 2017; 6: S1321-S1330 [OpenAIRE] [DOI]

Rupaimoole, R., Slack, F.J.. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov.. 2017; 16: 203-222 [OpenAIRE] [PubMed] [DOI]

Moore, C., Kosgodage, U., Lange, S., Inal, J.M.. The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy. Int. J. Cancer. 2017; 141: 428-436 [OpenAIRE] [PubMed] [DOI]

Brossa, A., Fonsato, V., Bussolati, B.. Anti-tumor activity of stem cell-derived extracellular vesicles. Oncotarget. 2019; 10: 1872-1873 [OpenAIRE] [PubMed] [DOI]

Bruno, S., Collino, F., Deregibus, M.C., Grange, C., Tetta, C., Camussi, G.. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev.. 2013; 22: 758-771 [OpenAIRE] [PubMed] [DOI]

80 references, page 1 of 6
Abstract
<jats:p>Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and one of the prominent causes of cancer mortality, leading to approximately 780,000 deaths per year worldwide. Down-regulation of microRNA-125b (miR-125b) is a prognostic indicator in HCC patients. Conversely, over-expression of miR-125b in HCC cells induces cell cycle arrest, inhibits proliferation, migration and invasion. Extracellular vesicles (EVs) function as intercellular messengers transferring proteins, RNAs, DNAs, carbohydrates, and lipids. Since EVs protect their cargo from degradation, delivery of therapeutic bioactive molecules, in particular miRNAs, through EV...
Subjects
free text keywords: hepatocellular carcinoma, microRNAs, extracellular vesicles, cell proliferation, adipose tissue-derived stromal cells, Article, Stromal cell, Cell cycle checkpoint, In vitro, Cell growth, Mesenchymal stem cell, Cancer research, microRNA, Viral vector, Intracellular, Biology
Related Organizations
Download fromView all 5 versions
Cells
Article . 2019
Provider: Crossref
Cells
Article
Provider: UnpayWall
ZENODO
Article . 2019
Provider: ZENODO
80 references, page 1 of 6

Hammond, S.M.. An overview of microRNAs. Adv. Drug Deliv. Rev.. 2015; 87: 3-14 [OpenAIRE] [PubMed] [DOI]

Croce, C.M.. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet.. 2009; 10: 704-714 [OpenAIRE] [PubMed] [DOI]

Daugaard, I., Hansen, T.B.. Biogenesis and function of Ago-Associated RNAs. Trends Genet.. 2017; 33: 208-219 [OpenAIRE] [PubMed] [DOI]

Yu, X., Odenthal, M., Fries, J.W.. Exosomes as miRNA carriers: Formation-function-future. Int. J. Mol. Sci.. 2016; 17 [OpenAIRE] [DOI]

Kalra, H., Drummen, G.P., Mathivanan, S.. Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci.. 2016; 17 [OpenAIRE] [PubMed] [DOI]

Doyle, L.M., Wang, M.Z.. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019; 8 [OpenAIRE] [DOI]

Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G.K.. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018; 7: 1535750 [OpenAIRE] [PubMed] [DOI]

Villarroya-Beltri, C., Baixauli, F., Gutiérrez-Vázquez, C., Sánchez-Madrid, F., Mittelbrunn, M.. Sorting it out: Regulation of exosome loading. Semin. Cancer Biol.. 2014; 28: 3-13 [OpenAIRE] [PubMed] [DOI]

Munson, P., Shukla, A.. Exosomes: Potential in cancer diagnosis and therapy. Medicines. 2015; 2: 310-327 [OpenAIRE] [PubMed] [DOI]

Hosseinahli, N., Aghapour, M., Duijf, P.H.G., Baradaran, B.. Treating cancer with microRNA replacement therapy: A literature review. J. Cell Physiol.. 2018; 233: 5574-5588 [OpenAIRE] [PubMed] [DOI]

Di Rocco, G., Baldari, S., Toietta, G.. Exosomes and other extracellular vesicles-mediated microRNA delivery for cancer therapy. Transl. Cancer Res.. 2017; 6: S1321-S1330 [OpenAIRE] [DOI]

Rupaimoole, R., Slack, F.J.. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov.. 2017; 16: 203-222 [OpenAIRE] [PubMed] [DOI]

Moore, C., Kosgodage, U., Lange, S., Inal, J.M.. The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy. Int. J. Cancer. 2017; 141: 428-436 [OpenAIRE] [PubMed] [DOI]

Brossa, A., Fonsato, V., Bussolati, B.. Anti-tumor activity of stem cell-derived extracellular vesicles. Oncotarget. 2019; 10: 1872-1873 [OpenAIRE] [PubMed] [DOI]

Bruno, S., Collino, F., Deregibus, M.C., Grange, C., Tetta, C., Camussi, G.. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev.. 2013; 22: 758-771 [OpenAIRE] [PubMed] [DOI]

80 references, page 1 of 6
Any information missing or wrong?Report an Issue