Share  Bookmark

 Download from



 Funded by

[1] U. Fayyad, G. PiatetskyShapiro, and P. Smyth, ``From data mining to knowledge discovery in databases,'' AI Mag., vol. 17, no. 3, pp. 37 54, 1996.
[2] S. Greco, B. Matarazzo, R. Slowinski, and J. Stefanowski, ``An algorithm for induction of decision rules consistent with the dominance principle,'' in Rough Sets and Current Trends in Computing (Lecture Notes in Computer Science), W. Ziarko and Y. Yao, Eds. Berlin, Germany: SpringerVerlag, 2001, pp. 304 313.
[3] J. Fürnkranz, ``Separateandconquer rule learning,'' Artif. Intell. Rev., vol. 13, no. 1, pp. 3 54, 1999.
[4] N. Lavra£, B. Kav²ek, P. Flach, and L. Todorovski, ``Subgroup discovery with CN2SD,'' J. Mach. Learn. Res., vol. 5, pp. 153 188, Feb. 2004.
[5] I. MacLeay et al., ``Digest of United Kingdom energy statistics 2014,'' Dept. Energy Climate Change, London, U.K., Tech. Rep. ISBN 9780115155307, 2014.
[6] R. de Sá Ferreira, L. A. Barroso, P. R. Lino, M. M. Carvalho, and P. Valenzuela, ``Timeofuse tariff design under uncertainty in priceelasticities of electricity demand: A stochastic optimization approach,'' IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2285 2295, Dec. 2013.
[7] S. Gottwalt, W. Ketter, C. Block, J. Collins, and C. Weinhardt, ``Demand side management A simulation of household behavior under variable prices,'' Energy Policy, vol. 39, no. 12, pp. 8163 8174, 2011.
[8] G. Chicco, R. Napoli, P. Postolache, M. Scutariu, and C. Toader, ``Customer characterization options for improving the tariff offer,'' IEEE Trans. Power Syst., vol. 18, no. 1, pp. 381 387, Feb. 2003.
[9] F. McLoughlin, A. Duffy, and M. Conlon, ``Characterising domestic electricity consumption patterns by dwelling and occupant socioeconomic variables: An Irish case study,'' Energy Buildings, vol. 48, pp. 240 248, May 2012.
[10] T. A. Nguyen and M. Aiello, ``Energy intelligent buildings based on user activity: A survey,'' Energy Buildings, vol. 56, pp. 244 257, Jan. 2013.