
Дипломна робота: 116 сторінок, 19 рисунків, 17 таблиць, 57 посилань, додаток. У роботі розглянуто актуальну проблему нестачі якісних даних для навчання класифікаційних моделей у сферах, де збирання великих вибірок ускладнене або неможливе. Об'єктом дослідження є процес генерації зображень, предметом – створення інтелектуальної системи синтезу зображень на основі архітектури Wasserstein GAN (WGAN). Метою роботи стало розроблення, реалізація та аналіз ефективності системи генерації синтетичних зображень, що можуть покращити якість класифікацій при обмежених вибірках. У межах дослідження здійснено аналіз існуючих архітектур GAN, обґрунтовано вибір WGAN як стабільнішої моделі для задач класифікації. Розроблено та реалізовано модифіковану топологію WGAN з використанням фреймворку PyTorch. Проведено навчання моделі на зображеннях дефектів виробничих деталей і згенеровано синтетичні зображення, що розширили навчальну вибірку. Отримані дані використано для навчання класифікатора, точність якого зросла на понад 7%. Порівняльний аналіз показав перевагу запропонованого підходу над класичними методами аугментації. Результати мають практичну цінність для медицини, промисловості, агросфери та систем безпеки.
інтелектуальна система, глибинне навчання., генерація зображень, wasserstein gan, нейронні мережі
інтелектуальна система, глибинне навчання., генерація зображень, wasserstein gan, нейронні мережі
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
