Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Інтелектуальна система генерації зображень на основі використання WGAN

Інтелектуальна система генерації зображень на основі використання WGAN

Abstract

Дипломна робота: 116 сторінок, 19 рисунків, 17 таблиць, 57 посилань, додаток. У роботі розглянуто актуальну проблему нестачі якісних даних для навчання класифікаційних моделей у сферах, де збирання великих вибірок ускладнене або неможливе. Об'єктом дослідження є процес генерації зображень, предметом – створення інтелектуальної системи синтезу зображень на основі архітектури Wasserstein GAN (WGAN). Метою роботи стало розроблення, реалізація та аналіз ефективності системи генерації синтетичних зображень, що можуть покращити якість класифікацій при обмежених вибірках. У межах дослідження здійснено аналіз існуючих архітектур GAN, обґрунтовано вибір WGAN як стабільнішої моделі для задач класифікації. Розроблено та реалізовано модифіковану топологію WGAN з використанням фреймворку PyTorch. Проведено навчання моделі на зображеннях дефектів виробничих деталей і згенеровано синтетичні зображення, що розширили навчальну вибірку. Отримані дані використано для навчання класифікатора, точність якого зросла на понад 7%. Порівняльний аналіз показав перевагу запропонованого підходу над класичними методами аугментації. Результати мають практичну цінність для медицини, промисловості, агросфери та систем безпеки.

Keywords

інтелектуальна система, глибинне навчання., генерація зображень, wasserstein gan, нейронні мережі

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green