publication . Preprint . Research . 2020

Modeling and Control of COVID-19 Epidemic through Testing Policies

Niazi, Muhammad Umar B.; Kibangou, Alain; Canudas-de-Wit, Carlos; Nikitin, Denis; Tumash, Liudmila; Bliman, Pierre-Alexandre;
Open Access English
  • Published: 03 Nov 2020
  • Publisher: HAL CCSD
  • Country: France
Comment: 49 pages, 22 figures
free text keywords: COVID-19, Testing, Model design, Model validation, Parameter estimation, Control policies, [INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering, [INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY], [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC], [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS], [INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA], [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing, [SPI.AUTO]Engineering Sciences [physics]/Automatic, Mathematics - Optimization and Control, Electrical Engineering and Systems Science - Systems and Control, Mathematics - Dynamical Systems
Communities with gateway
OpenAIRE Connect image
Funded by
EC| Scale-FreeBack
Scale-Free Control for Complex Physical Network Systems
  • Funder: European Commission (EC)
  • Project Code: 694209
  • Funding stream: H2020 | ERC | ERC-ADG

[2] L. R. Baden, E. J. Rubin, COVID-19 | The search for e ective therapy, New England Journal of Medicine 382 (19) (2020) 1851{1852.

[22] A. Ducrot, P. Magal, T. Nguyen, G. Webb, Identifying the number of unreported cases in SIR epidemic models, Mathematical medicine and biology: A journal of the IMA 37 (2) (2020) 243{261.

[23] J. Kohler, L. Schwenkel, A. Koch, J. Berberich, P. Pauli, F. Allgower, Robust and optimal predictive control of the COVID-19 outbreak, arXiv:2005.03580 (2020).

[24] M. M. Morato, I. M. Pataro, M. V. da Costa, J. E. Normey-Rico, A parametrized nonlinear predictive control strategy for relaxing COVID-19 social distancing measures in Brazil, arXiv:2007.09686 (2020).

[35] A. K. Winter, S. T. Hegde, The important role of serology for COVID-19 control, The Lancet Infectious Diseases 20 (7) (2020) 758{759.

[48] P. Van den Driessche, J. Watmough, Further notes on the basic reproduction number, in: Mathematical epidemiology, Springer, 2008, pp. 159{178.

[49] J. Oh, J.-K. Lee, D. Schwarz, H. L. Ratcli e, J. F. Markuns, L. R. Hirschhorn, National response to COVID-19 in the republic of korea and lessons learned for other countries, Health Systems & Reform 6 (1) (2020) e1753464.

[50] L. Ljung, System Identi cation: Theory for the user, 2nd Edition, Prentice Hall PTR, Upper Saddle River, NJ-USA, 1999.

[52] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the International Conference on Neural Networks (ICNN), Vol. 4, IEEE, 1995, pp. 1942{1948.

[53] S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, N. G. Reich, J. Lessler, The incubation period of coronavirus disease 2019 (covid-19) from publicly reported con rmed cases: estimation and application, Annals of internal medicine 172 (9) (2020) 577{582.

[54] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, B. Song, X. Gu, et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in wuhan, china: a retrospective cohort study, The Lancet (2020).

[55] M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE transactions on Evolutionary Computation 6 (1) (2002) 58{73.

[56] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization: An overview, Swarm intelligence 1 (1) (2007) 33{57.

[57] Z.-H. Zhan, J. Zhang, Y. Li, H. S.-H. Chung, Adaptive particle swarm optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39 (6) (2009) 1362{1381.

Any information missing or wrong?Report an Issue