
Бородкин Станислав Владимирович, адъюнкт, НИЦ (ППО и УА ВВС), Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина», г. Воронеж; borodkinstanislav@ya.ru. Батаронов Игорь Леонидович, д-р физ.-мат. наук, заведующий кафедрой «Высшая математика и физико-математическое моделирование», Воронежский государственный технический университет, г. Воронеж. Иванов Алексей Владимирович, канд. техн. наук, начальник 2-го управления НИЦ (ППО и УА ВВС), Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина», г. Воронеж. Ряжских Виктор Иванович, д-р техн. наук, заведующий кафедрой «Прикладная математика и механика», Воронежский государственный технический университет, г. Воронеж. S.V. Borodkin1 *, I.L. Bataronov2, A.V. Ivanov1, V.I. Ryazhskikh2 1 Military Scientific Educational Center of Military-Air Forces “N.E. Zhukovsky and Ju.A. Gagarin Military-Air Academy”, Voronezh, Russian Federation, 2 Voronezh State Technical University, Voronezh, Russian Federation * borodkinstanislav@ya.ru На основе экспериментальных данных по газификации кислорода на установке СГУ-7КМ-У выполнена идентификация дифференциальной параметрической модели теплообмена в газификаторах закрытого типа. По результатам опорных опытов идентифицированы внешние параметры – мощность нагревателя, теплоемкость испарителя и производительность насоса. Внутренние параметры модели – числовые множители при коэффициентах теплоотдачи в кислороде, теплоносителе и окружающей среде – идентифицированы методом пассивной стратегии. Разработаны методики оптимизации работы газификатора по достижению заданного диапазона выходной температуры в стационарном и нестационарном режимах работы. Методики апробированы на примере газификационной установки СГУ-7КМ-У. This paper presents experimental data on oxygen gasification as performed on an SGU-7KM-U unit; data is used to find a differential parametric model of heat transfer in closed-loop gasification units. Reference experiments helped find the external parameters such as the heater power, the heat capacity of the evaporator, and the pumping rate. The internal parameters of the model, i.e., the numerical multipliers for coefficients of heat transfer in oxygen, coolant, and the environment, were identified by the passive strategy method. The paper further presents newly developed methods for optimizing the gasifier performance to reach the required range of output temperatures in steady-state and non-steady-state operation. The methods were tested on an SGU-7KM-U gasification unit.
параметрическая идентификация модели, parametric identification of the model, криогенные газификаторы, heat transfer optimization, cryogenic gasifiers, 536.24 [УДК 536.423], сверхкритические флюиды, supercritical fluids, оптимизация теплообмена
параметрическая идентификация модели, parametric identification of the model, криогенные газификаторы, heat transfer optimization, cryogenic gasifiers, 536.24 [УДК 536.423], сверхкритические флюиды, supercritical fluids, оптимизация теплообмена
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
