publication . Conference object . 2016

Biochemical composition and methane production correlations

CHARNIER, Cyrille; Latrille, Eric; Moscoviz, Roman; Miroux, Jérémie; Steyer, Jean-Philippe;
Open Access English
  • Published: 23 Oct 2016
  • Publisher: HAL CCSD
  • Country: France
International audience; Substrates for anaerobic digestion are composed of heterogeneous and complex organic matter. General parameters of the organic matter can be used to describe its composition such as sugar, protein and lipid contents, Chemical Oxygen Demand (COD), Biochemical Methane Potential (BMP) and kinetic of methane production. These parameters are required for the monitoring of digesters but their characterization are time consuming and expensive; thus, these parameters are rarely assessed all together. We investigated the existing correlations between COD, methane yield, biodegradability, kinetic of methane production and sugar, protein and lipid c...
free text keywords: solid waste characterization, kinetic of methane production, biochemical methane potential, chemical oxygen demand, principal component analysis, biochemical composition, [SDV]Life Sciences [q-bio], [SDE]Environmental Sciences, solid waste characterization;biochemical composition;kinetic of methane production;biochemical methane potential;chemical oxygen demand;principal component analysis, déchet solide, composition biochimique, digestion anaérobie, production de méthane, potentiel méthane, demande chimique en oxygène, bioénergie, valorisation de la matière organique
Related Organizations
23 references, page 1 of 2

Al-Kandari, N.M., Jolliffe, I.T., 2005. Variable selection and interpretation in correlation principal components. Environmetrics 16, 659-672.

Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V, Pavlostathis, S.G., Rozzi, a, Sanders, W.T.M., Siegrist, H., Vavilin, V. a, 2002. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 45, 65-73.

Batstone, D.J., Puyol, D., Flores-Alsina, X., Rodríguez, J., 2015. Mathematical modelling of anaerobic digestion processes: applications and future needs. Rev. Environ. Sci. Biotechnol. 14, 595-613.

Buffiere, P., Frederic, S., Marty, B., Delgenes, J., 2008. A comprehensive method for organic matter characterization in solid wastes in view of assessing their anaerobic biodegradability 1783-1788. [OpenAIRE]

Charnier, C., Latrille, E., Lardon, L., Miroux, J., Steyer, J.P., 2016. Combining pH and electrical conductivity measurements to improve titrimetric methods to determine ammonia nitrogen, volatile fatty acids and inorganic carbon concentrations. Water Res. 95, 268-279.

DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-356.

García-Gen, S., Rodríguez, J., Lema, J.M., 2014. Optimisation of substrate blends in anaerobic co-digestion using adaptive linear programming. Bioresour. Technol. 173, 159-67.

García-Gen, S., Sousbie, P., Rangaraj, G., Lema, J.M., Rodríguez, J., Steyer, J.-P., Torrijos, M., 2015. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes. Waste Manag. 35, 96-104.

Girault, R., Bridoux, G., Nauleau, F., Poullain, C., Buffet, J., Steyer, J.-P., Sadowski, a G., Béline, F., 2012. A waste characterisation procedure for ADM1 implementation based on degradation kinetics. Water Res. 46, 4099-110. [OpenAIRE]

Hansen, T.L., Schmidt, J.E., Angelidaki, I., Marca, E., Jansen, J.L.C., Mosbaek, H., Christensen, T.H., 2004. Method for determination of methane potentials of solid organic waste. Waste Manag. 24, 393-400.

Jacobi, H.F., Ohl, S., Thiessen, E., Hartung, E., 2012. NIRS-aided monitoring and prediction of biogas yields from maize silage at a full-scale biogas plant applying lumped kinetics. Bioresour. Technol. 103, 162-172.

Jimenez, J., Gonidec, E., Cacho Rivero, J.A., Latrille, E., Vedrenne, F., Steyer, J.-P., 2014. Prediction of anaerobic biodegradability and bioaccessibility of municipal sludge by coupling sequential extractions with fluorescence spectroscopy: towards ADM1 variables characterization. Water Res. 50, 359-72.

Jimenez, J., Latrille, E., Harmand, J., Robles, A., Ferrer, J., Gaida, D., Wolf, C., Mairet, F., Bernard, O., Alcaraz-Gonzalez, V., Mendez-Acosta, H., Zitomer, D., Totzke, D., Spanjers, H., Jacobi, F., Guwy, A., Dinsdale, R., Premier, G., Mazhegrane, S., Ruiz-Filippi, G., Seco, A., Ribeiro, T., Pauss, A., Steyer, J.P., 2015. Instrumentation and control of anaerobic digestion processes: a review and some research challenges. Rev. Environ. Sci. Biotechnol. 14, 615-648. [OpenAIRE]

Krapf, L.C., Nast, D., Gronauer, A., Schmidhalter, U., Heuwinkel, H., 2013. Transfer of a near infrared spectroscopy laboratory application to an online process analyser for in situ monitoring of anaerobic digestion. Bioresour. Technol. 129, 39-50.

Lauwers, J., Appels, L., Thompson, I.P., Degrève, J., Van Impe, J.F., Dewil, R., 2013. Mathematical modelling of anaerobic digestion of biomass and waste: Power and limitations. Prog. Energy Combust. Sci. 39, 383-402. [OpenAIRE]

23 references, page 1 of 2
Any information missing or wrong?Report an Issue