publication . Article . 2014

High protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: The increased luminal bulk connection

LIU, Xinxin; BLOUIN, Jean-Marc; Santacruz, Arlette; Lan, Annaig; Andriamihaja, Mireille; Wilkanowicz, Sabina; Benetti, Pierre-Henri; Tomé, Daniel; Sanz, Yolanda; Blachier, Francois; ...
Open Access
  • Published: 15 Aug 2014 Journal: American Journal of Physiology-Gastrointestinal and Liver Physiology, volume 307, pages G459-G470 (issn: 0193-1857, eissn: 1522-1547, Copyright policy)
  • Publisher: American Physiological Society
Abstract
<jats:p> High-protein diets are used for body weight reduction, but consequences on the large intestine ecosystem are poorly known. Here, rats were fed for 15 days with either a normoproteic diet (NP, 14% protein) or a hyperproteic-hypoglucidic isocaloric diet (HP, 53% protein). Cecum and colon were recovered for analysis. Short- and branched-chain fatty acids, as well as lactate, succinate, formate, and ethanol contents, were markedly increased in the colonic luminal contents of HP rats ( P &lt; 0.05 or less) but to a lower extent in the cecal luminal content. This was associated with reduced concentrations of the Clostridium coccoides and C. leptum groups and ...
Subjects
free text keywords: Hepatology, Gastroenterology, Physiology (medical), Physiology, Cecum, medicine.anatomical_structure, medicine, Monocarboxylate transporter, biology.protein, biology, Large intestine, Butyrate-Producing Bacteria, Butyrate, Biochemistry, Metabolism, High-protein diet, medicine.disease_cause, Faecalibacterium prausnitzii, biology.organism_classification, FECAL MICROBIOTA, EPITHELIAL-CELLS, REAL-TIME PCR, HUMAN LARGE-INTESTINE, GROUP-SPECIFIC PRIMERS, GRADIENT GEL-ELECTROPHORESIS, CHAIN FATTY-ACIDS, transport, SCFA, microbiota, protein, AMINO-ACIDS, [SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology, Hépatologie et Gastroentérologie, Hépatology and Gastroenterology, protein;microbiota;SCFA;transport;metabolism;CHAIN FATTY-ACIDS;GRADIENT GEL-ELECTROPHORESIS;BUTYRATE-PRODUCING BACTERIA;GROUP-SPECIFIC PRIMERS;HUMAN LARGE-INTESTINE;REAL-TIME PCR;EPITHELIAL-CELLS;MONOCARBOXYLATE TRANSPORTER;FECAL MICROBIOTA;AMINO-ACIDS, santé humaine, intestin, cellule épithéliale, Bactérie productrice de butyrate, pcr en temps réel, électrophorèse sur gel, microbiote fécal
75 references, page 1 of 5

1. Andriamihaja M, Chaumontet C, Tome D, Blachier F. Butyrate metabolism in human colon carcinoma cells: implications concerning its growth-inhibitory effect. J Cell Physiol 218: 58 -65, 2009. [OpenAIRE]

2. Archer SYJJ, Kim HJ, Ma Q, Mou H, Dasety V, Meng S, Hodin RA. The histone deacetylase inhibitor butyrate down regulates cyclin B1 gene expression via p21/WAF-1-dependent mechanism in human colon cancer cells. Am J Physiol Gastrointest Liver Physiol 289: G696 -G703, 2005.

3. Bach Knudsen KE, Serena A, Canibe N, Juntunen KS. New insight into butyrate metabolism. Proc Nutr Soc 62: 81-86, 2003.

4. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66: 1654 -1661, 2000. [OpenAIRE]

5. Barker HA. Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50: 23-40, 1981.

6. Binder HJ. Role of colonic short-chain fatty acid transport in diarrhea. Annu Rev Physiol 72: 297-313, 2010.

7. Binder HJ, Sangan P, Rajendran VM. Physiological and molecular studies of colonic H ,K -ATPase. Semin Nephrol 19: 405-414, 1999.

8. Blachier F, Mariotti F, Huneau JF, Tome D. Effects of amino acidderived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33: 547-562, 2007.

9. Boren J, Lee WN, Bassilian S, Centelles JJ, Lim S, Ahmed S, Boros LG, Cascante M. The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation. J Biol Chem 278: 28395- 28402, 2003. [OpenAIRE]

10. Borthakur A, Saksena S, Gill RK, Alrefai WA, Ramaswamy K, Dudeja PK. Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-kappaB pathway. J Cell Biochem 103: 1452-1463, 2008.

11. Buyse M, Sitaraman SV, Liu X, Bado A, Merlin D. Luminal leptin enhances CD147/MCT-1-mediated uptake of butyrate in the human intestinal cell line Caco2-BBE. J Biol Chem 277: 28182-28190, 2002.

12. Cano PG, Santacruz A, Trejo FM, Sanz Y. Bifidobacterium CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet fed mice. Obesity (Silver Spring) 21: 2310 -2321, 2013. [OpenAIRE]

13. Chacko A, Cummings JH. Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food. Gut 29: 809 -815, 1988. [OpenAIRE]

14. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156 -159, 1987. [OpenAIRE]

15. Cuff M, Dyer J, Jones M, Shirazi-Beechey S. The human colonic monocarboxylate transporter Isoform 1: its potential importance to colonic tissue homeostasis. Gastroenterology 128: 676 -686, 2005.

75 references, page 1 of 5
Abstract
<jats:p> High-protein diets are used for body weight reduction, but consequences on the large intestine ecosystem are poorly known. Here, rats were fed for 15 days with either a normoproteic diet (NP, 14% protein) or a hyperproteic-hypoglucidic isocaloric diet (HP, 53% protein). Cecum and colon were recovered for analysis. Short- and branched-chain fatty acids, as well as lactate, succinate, formate, and ethanol contents, were markedly increased in the colonic luminal contents of HP rats ( P &lt; 0.05 or less) but to a lower extent in the cecal luminal content. This was associated with reduced concentrations of the Clostridium coccoides and C. leptum groups and ...
Subjects
free text keywords: Hepatology, Gastroenterology, Physiology (medical), Physiology, Cecum, medicine.anatomical_structure, medicine, Monocarboxylate transporter, biology.protein, biology, Large intestine, Butyrate-Producing Bacteria, Butyrate, Biochemistry, Metabolism, High-protein diet, medicine.disease_cause, Faecalibacterium prausnitzii, biology.organism_classification, FECAL MICROBIOTA, EPITHELIAL-CELLS, REAL-TIME PCR, HUMAN LARGE-INTESTINE, GROUP-SPECIFIC PRIMERS, GRADIENT GEL-ELECTROPHORESIS, CHAIN FATTY-ACIDS, transport, SCFA, microbiota, protein, AMINO-ACIDS, [SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology, Hépatologie et Gastroentérologie, Hépatology and Gastroenterology, protein;microbiota;SCFA;transport;metabolism;CHAIN FATTY-ACIDS;GRADIENT GEL-ELECTROPHORESIS;BUTYRATE-PRODUCING BACTERIA;GROUP-SPECIFIC PRIMERS;HUMAN LARGE-INTESTINE;REAL-TIME PCR;EPITHELIAL-CELLS;MONOCARBOXYLATE TRANSPORTER;FECAL MICROBIOTA;AMINO-ACIDS, santé humaine, intestin, cellule épithéliale, Bactérie productrice de butyrate, pcr en temps réel, électrophorèse sur gel, microbiote fécal
75 references, page 1 of 5

1. Andriamihaja M, Chaumontet C, Tome D, Blachier F. Butyrate metabolism in human colon carcinoma cells: implications concerning its growth-inhibitory effect. J Cell Physiol 218: 58 -65, 2009. [OpenAIRE]

2. Archer SYJJ, Kim HJ, Ma Q, Mou H, Dasety V, Meng S, Hodin RA. The histone deacetylase inhibitor butyrate down regulates cyclin B1 gene expression via p21/WAF-1-dependent mechanism in human colon cancer cells. Am J Physiol Gastrointest Liver Physiol 289: G696 -G703, 2005.

3. Bach Knudsen KE, Serena A, Canibe N, Juntunen KS. New insight into butyrate metabolism. Proc Nutr Soc 62: 81-86, 2003.

4. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, Flint HJ. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66: 1654 -1661, 2000. [OpenAIRE]

5. Barker HA. Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50: 23-40, 1981.

6. Binder HJ. Role of colonic short-chain fatty acid transport in diarrhea. Annu Rev Physiol 72: 297-313, 2010.

7. Binder HJ, Sangan P, Rajendran VM. Physiological and molecular studies of colonic H ,K -ATPase. Semin Nephrol 19: 405-414, 1999.

8. Blachier F, Mariotti F, Huneau JF, Tome D. Effects of amino acidderived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33: 547-562, 2007.

9. Boren J, Lee WN, Bassilian S, Centelles JJ, Lim S, Ahmed S, Boros LG, Cascante M. The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation. J Biol Chem 278: 28395- 28402, 2003. [OpenAIRE]

10. Borthakur A, Saksena S, Gill RK, Alrefai WA, Ramaswamy K, Dudeja PK. Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-kappaB pathway. J Cell Biochem 103: 1452-1463, 2008.

11. Buyse M, Sitaraman SV, Liu X, Bado A, Merlin D. Luminal leptin enhances CD147/MCT-1-mediated uptake of butyrate in the human intestinal cell line Caco2-BBE. J Biol Chem 277: 28182-28190, 2002.

12. Cano PG, Santacruz A, Trejo FM, Sanz Y. Bifidobacterium CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet fed mice. Obesity (Silver Spring) 21: 2310 -2321, 2013. [OpenAIRE]

13. Chacko A, Cummings JH. Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food. Gut 29: 809 -815, 1988. [OpenAIRE]

14. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156 -159, 1987. [OpenAIRE]

15. Cuff M, Dyer J, Jones M, Shirazi-Beechey S. The human colonic monocarboxylate transporter Isoform 1: its potential importance to colonic tissue homeostasis. Gastroenterology 128: 676 -686, 2005.

75 references, page 1 of 5
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2014

High protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: The increased luminal bulk connection

LIU, Xinxin; BLOUIN, Jean-Marc; Santacruz, Arlette; Lan, Annaig; Andriamihaja, Mireille; Wilkanowicz, Sabina; Benetti, Pierre-Henri; Tomé, Daniel; Sanz, Yolanda; Blachier, Francois; ...