publication . Article . 2012

Leaching of rare earth elements from bentonite clay

van der Watt, J.G; Waanders, F.B;
Open Access English
  • Published: 01 Apr 2012
  • Publisher: The Southern African Institute of Mining and Metallurgy
Due to increasing concerns of global rare earth element shortfalls in the near future, possible alternative sources of rare earth elements have recently become of economic interest. One such alternative is decanting acid mine water originating primarily from abandoned old mines in the Witwatersrand region of the Republic of South Africa. In this study, a novel way of rare earth element removal from the acid mine drainage was employed, making use of bentonite clay, which has very good adsorbent properties, as a rare earth element carrier material. The process can be economically viable only, if the elements can be selectively removed from the bentonite clay carri...
free text keywords: rare earth elements, REE, bentonite clay, acid mine drainage, AMD, leaching, removal
18 references, page 1 of 2

1. LUSTY, P. and WALTERS, A. Rare earth elements. British Geological Survey, Nottingham, UK, 2010. 45 pp. (Minerals Profile). [OpenAIRE]

2. HE, X., ZHANG, Z., ZHANG, H., ZHAO, Y. and CHAI, Z. Neurotoxicological evaluation of long-term lanthanum chloride. Toxicological Sciences, vol. 103, 2008. pp. 354-361.

3. WEIDONG, Y., PING, Z., JIESHENG, L. and YANFANG, X. Effect of long-term intake of Y3+ in drinking water on gene expression in brains of rats. Journal of Rare Earths, vol. 24, 2006. pp. 369-373.

5. NAGASAKI, S., TANAKAA, S. and SUZUKIA, A. Affinity of finely dispersed montmorillonite colloidal particles for. Journal of Nuclear Materials, vol. 244, 1997. pp. 29-35.

6. RASMUSSEN, B., FLETCHER, I.R., MUHLING, J.R., MUELLER, A.G. and HALL, G.C. Bushveld-aged fluid flow, peak metamorphism, and gold mobilization in the Witwatersrand basin, South Africa: Constraints from in situ SHRIMP U-Pb dating of monazite and xenotime. Geology, vol. 35, 2007. pp. 931-934.

7. CETINER, Z.S., WOOD, S.A. and GAMMONS, C.H. The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150°C. Chemical Geology, vol. 217, 2005. pp. 147-169.

8. COETZEE, H., WINDE, F., and WADE, P.W. An assessment of sources, pathways, mechanisms and risks of current and potential future pollution of water and sediments in gold-mining areas of the Wonderfonteinspruit catchment. Report No. 1214/1/06. Water Research Commission, Pretoria, 2006.

9. SHIRVANI, M., SHARIATMADARI, H., and KALBASI, M. Kinetics of cadmium desorption from fibrous silicate clay minerals: Influence of organic ligands and aging. Applied Clay Science, vol. 37, 2007. pp. 175-184.

10. BASHIRI, H. Desorption kinetics at the solid/solution interface: a theoretical description by statistical rate theory for close-to-equilibrium systems. The Journal of Physical Chemistry, vol. 115, 2011. pp. 5732-5739.

11. WANG, D.Z., JIANG, X., RAO, W., and HE, J.Z. Kinetics of soil cadmium desorption under simulated acid rain. Ecological Complexity, vol. 6, 2009. pp. 432-437.

12. LÜ, X.N., XU, J.M., MA, W.Z., and LU, Y.F. Comparison of seven kinetic equations for K release and application of kinetic parameters. Pedosphere, vol. 17, 2007. pp. 124-129.

13. HAVLIN, J.L., WESTFALL, D.G., and OLSEN, S.R. Mathematical Models for Potassium Release Kinetics in Calcareous Soils. Soil Science Society of America Journal, vol. 49, 1985. pp. 371-376.

14. TSENG, J.Y., CHANG, C.Y., CHANG, C.F., CHEN, Y.H., CHANG, C.C., JI, D.E., CHIU, C.Y., and CHIANG, P.C. Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent. Journal of Hazardous Materials, vol. 171, 2009. pp. 370-377.

15. MIHALJEVIč, M., ETTLER, V., HRADIL, D., ŠEBEK, O., and STRAND, L. Dissolution of bentonite and release of rare earth elements at different solid/liquid ratios in a simulated wine purification process. Applied Clay Science, vol. 31, 2006. pp. 36-46.

16. BIDDAU, R., CIDU, R., and FRAU, F. Rare earth elements in waters from the albitite-bearing granodiorites of Central Sardinia, Italy. Chemical Geology, vol. 182, 2002. pp. 1-14.

18 references, page 1 of 2
Any information missing or wrong?Report an Issue