Producción de ácido láctico a partir de biomasa de origen vegetal

Bachelor thesis Spanish; Castilian OPEN
Fernández Díez, Laura;
(2014)
  • Subject: Biomasa | Ácido láctico | Biomasa vegetal

Se va a estudiar la conversión a ácido láctico de distintos tipos de biomasa, siendo necesario que la biomasa presente fructosa en su composición. Las biomasas que se utilizarán serán: sacarosa, melaza de caña, melaza de remolacha e inulina. Para ello se empleará una pl... View more
  • References (13)
    13 references, page 1 of 2

    [1]http://www.miliarium.com/Bibliografia/Monografias/Energia/EnergiasRen ovables/Biomasa/Welcome.asp visitado por última vez 21 de agosto de 2014 [2] Donald L. Klass. Biomass for Renewable Energy, Fuels, and Chemicals, 1998, 2-88, 91-104, 137-157 [4] Arai, K., Smith, R., & Aida, T. (2009). Review: Decentralized chemical processes with supercritical fluid technology for sustainable society. The Journal of Supercritical Fluids, 47, 628-636.

    [14] Brunner, G., Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes, The Journal of Supercritical Fluids, 47 (2009) 373-381.

    [25] Kabyemela B.M., Adschiri T., Malaluan R., Arai K., Degradation Kinetics of Dihydroxyacetone and Glyceraldehyde in Subcritical and Supercritical Water, Industrial & Engineering Chemistry Research, 36 (1997) 2025-2030.

    [26] Aida T.M., Ikarashi A., Saito Y., Watanabe M., Smith Jr R.L., Arai K., Dehydration of lactic acid to acrylic acid in high temperature water at high pressures, The Journal of Supercritical Fluids, 50 (2009) 257-264.

    [27] Aida, T.M., Tajima, K., Watanabe, M., Saito, Y., Kuroda, K. & Nonaka T. (2007) Reactions of D-fructose in water at temperatures up to 400 ºC and pressures up to 100 MPa. Journal of Supercritical Fluids, 42, 110-9.

    [28] Kabyemela, B.M., Adschiri, T., Malaluan, R., and Arai, K., Degradation Kinetics of Dihydroxyacetone and Glyceraldehyde in Subcritical and Supercritical Water. Industrial & Engineering Chemistry Research, 1997. 36(6): p. 2025-2030.

    [29] Kabyemela, B.M., Adschiri, T., Malaluan, R.M., and Arai, K., Glucose and Fructose Decomposition in Subcritical and Supercritical Water:   Detailed Reaction Pathway, Mechanisms, and Kinetics. Industrial & Engineering Chemistry Research, 1999. 38(8): p. 2888-2895.

    [30] Kabyemela, B.M., Takigawa, M., Adschiri, T., Malaluan, R.M., and Arai, K., Mechanism and Kinetics of Cellobiose Decomposition in Sub- and Supercritical Water. Industrial & Engineering Chemistry Research, 1998. 37(2): p. 357-361.

    [31] Aida, T.M., Sato, Y., Watanabe, M., Tajima, K., Nonaka, T., Hattori, H., and Arai, K., Dehydration of D-glucose in high temperature water at pressures up to 80 MPa. The Journal of Supercritical Fluids, 2007. 40(3): p. 381-388.

    [32] Kabyemela, B.M., Adschiri, T., Malaluan, R.M., Arai, K., and Ohzeki, H., Rapid and Selective Conversion of Glucose to Erythrose in Supercritical Water. Industrial & Engineering Chemical Research, 1997. 36(12): p. 5063-5067.

  • Metrics
Share - Bookmark