SIIE 2016

Conference object Spanish; Castilian OPEN
Bote Lorenzo, Miguel L.; Gómez Sánchez, Eduardo;
(2016)
  • Publisher: https://gredos.usal.es/jspui/handle/10366/131450
  • Subject: MOOC

Producción Científica En este artículo se propone llevar a cabo la predicción de pérdida de implicación de los participantes de un curso en línea masivo y abierto a partir de dos indicadores, uno basado en el consumo de vídeos y otro en la realización de pruebas de e... View more
  • References (22)
    22 references, page 1 of 3

    [1] T. R. Liyanagunawardena, A. A. Adams, and S. A. Williams, “MOOCs: a systematic study of the published literature 2008-2012,” The International Review of Research in Open and Distance Learning, vol. 14, no. 3, pp. 202-227, 2013.

    [2] R. F. Kizilcec, C. Piech, and E. Schneider, “Deconstructing disengagement: analyzing learner subpopulations in massive open online courses,” in Proceedings of the Third International Conference on Learning Analytics and Knowledge, Leuven, Belgium, 2013, pp. 170- 179.

    [3] A. Ramesh, D. Goldwasser, and B. Huang, “Modeling learner engagement in MOOCs using probabilistic soft logic,” in Proceedings of the Neural Information Processing Systems Conference, Workshop on Data Driven Education, Lake Tahoe, NV, USA, 2013.

    [4] A. Ramesh, D. Goldwasser, B. Huang, H. Daume, III, and L. Getoor, “Uncovering hidden engagement patterns for predicting learner performance in MOOCs,” in Proceedings of the First ACM Conference on Learning at Scale, New York, New York, USA, 2014, pp. 157-158.

    [5] R. Ferguson and D. Clow, “Examining engagement,” in Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, Poughkeepsie, NY, USA, 2015, pp. 51-58.

    [6] R. Ferguson, D. Clow, R. Beale, A. J. Cooper, N. Morris, S. Bayne, and A. Woodgate, “Moving Through MOOCS: Pedagogy, Learning Design and Patterns of Engagement,” in Proceedings of the Tenth European Conference on Technology Enhanced Learningç, Toledo, Spain, 2015, pp. 70-84.

    [7] J. E. Beck, “Engagement tracing: using response times to model student disengagement,” in Proceedings of the International Conference on Artificial Intelligence in Education, Pittsburgh, PA, USA, 2005, pp. 88- 95.

    [8] C. Mills, N. Bosch, A. Graesser, and S. D'Mello, “To quit or not to quit: predicting future behavioral disengagement from reading patterns,” in Proceedings of the International Conference on Intelligent Tutoring Systems, Honolulu, HI, USA, 2014, pp. 19-28.

    M. Cocea and S. Weibelzahl, “Disengagement Detection in Online Learning: Validation Studies and Perspectives,” IEEE Trans. Learning Technol., vol. 4, no. 2, pp. 114-124.

    [10] D. Yang, T. Sinha, and D. Adamson, “Turn on, tune in, drop out: Anticipating student dropouts in massive open online courses,” in Proceedings of the Neural Information Processing Systems Conference, Workshop on Data Driven Education, Lake Tahoe, NV, USA, 2013.

  • Similar Research Results (2)
  • Metrics
Share - Bookmark