publication . Other literature type . Article . 2008

Enumeration and Characterization of Arsenic-Tolerant Diazotrophic Bacteria in a Long-Term Heavy-Metal-Contaminated Soil

A. Oliveira; M. E. Pampulha; M. M. Neto; A. C. Almeida;
  • Published: 09 Nov 2008
  • Publisher: Springer Science and Business Media LLC
  • Country: Portugal
Abstract
The abundance of arsenic-tolerant diazotrophic bacteria was compared in a long-term contaminated soil versus a non-contaminated one. In addition, the characterization of tolerant diazotrophic bacteria was carried out. Differences in the number of heterotrophic N2 fixers were found between soils. Contaminated soil showed a decrease in the microbial population size of about 80%, confirming the great sensitivity of this group of soil bacteria to metals. However, quantitative analysis of the response to increased doses of arsenic reveals that the proportion of the culturable diazotrophic community tolerant to arsenic was identical for both soils (contaminated and no...
Subjects
Medical Subject Headings: complex mixtures
free text keywords: arsenic, diazotrophic bacteria, soil bacteria, heavy metals, Ecological Modelling, Environmental Engineering, Pollution, Water Science and Technology, Environmental Chemistry, Soil water, Nitrogen fixation, Soil contamination, Diazotroph, Firmicutes, biology.organism_classification, biology, Bacteria, Actinobacteria, Soil classification
Related Organizations
Funded by
FCT| POCTI/AGG/46707/2002
Project
POCTI/AGG/46707/2002
Pollution effects of heavy metals on soil microbial community
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. (FCT)
  • Project Code: 46707
  • Funding stream: POCI
41 references, page 1 of 3

Achour, A. R., Bauda, P., & Billard, P. (2007). Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Research in Microbiology, 158, 128-137. doi:10.1016/j.resmic.2006.11.006.

Anderson, C. R., & Cook, G. M. (2004). Isolation and characterization of arsenate-reducing bacteria from arseniccontaminated sites in New Zealand. Current Microbiology, 48, 341-347. doi:10.1007/s00284-003-4205-3.

Angle, J. S., Chaney, R. L., & Rhee, D. (1993). Bacterial resistance to heavy metals related to extractable and total metal concentrations in soil and media. Soil Biology & Biochemistry, 25(10), 1443-1446. doi:10.1016/0038-0717(93)90059-K.

Berdicevsky, I., Duek, L., Merzbach, D., & Yannai, S. (1993). Susceptibility of different yeast species to environmental toxic metals. Environmental Pollution, 80, 41-44. doi:10.1016/0269-7491(93)90007-B.

Brookes, P. C., & McGrath, S. P. (1984). Effects of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science, 35, 341-346. doi:10.1111/j.1365-2389. 1984.tb00288.x. [OpenAIRE]

Campbell, J. I. A., Jacobsen, C. S., & Sørensen, J. (1995). Species variation and plasmid incidence among fluorescent Pseudomonas strains isolated from agricultural and industrial soils. FEMS Microbiology Ecology, 18, 51-62. doi:10.1111/j.1574-6941.1995.tb00163.x.

Castro, I. V., Ferreira, E. M., & McGrath, S. P. (2003). Survival and plasmid stability of rhizobia introduced into a contaminated soil. Soil Biology & Biochemistry, 35, 49- 54. doi:10.1016/S0038-0717(02)00235-3.

Commission of the European Communities (CEC) (1986). Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities, L181, 6-12.

Collard, J. M., Corbisier, P., Diels, L., Dong, Q., Jeanthon, C., & Mergeay, M. (1994). Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: Mechanisms and applications. FEMS Microbiology Reviews, 14, 405- 414. doi:10.1111/j.1574-6976.1994.tb00115.x.

El-Aziz, R., Angle, J. S., & Chaney, R. L. (1991). Metal tolerance of Rhizobium meliloti isolated from heavy metal contaminated soil. Soil Biology & Biochemistry, 23, 795- 798. doi:10.1016/0038-0717(91)90151-9.

Ellis, R. J., Neish, B., Trett, M. W., Best, J. G., Weightman, A. J., & Morgan, P. (2001). Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination. Journal of Microbiological Methods, 45, 171-185. doi:10.1016/S0167-7012(01) 00245-7.

Fließbach, A. & Reber, H. (1991). Auswirkungen einer langjahrigen Zufuhr von Klärschlammen auf Bodenmikroorgan. In D. R. Sauerbeck & S. Lübben (Eds.) Bodenorganismen und Pflanzen (pp. 327-358) Berichte aus der Ökologischen Forschung, Forschungszentrum Jülich GmbH.

Garau, G., Castaldi, P., Santona, L., Deiana, P., & Melis, P. (2007). Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 142, 47-57. [OpenAIRE]

Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30, 1389-1414. [OpenAIRE]

Jackson, C. R., Jackson, E. F., Dugas, S. L., Gamble, K., & Williams, S. E. (2003). Microbial transformations of arsenite and arsenate in natural environments. Recent Research Development Microbiology, 7, 103-118.

41 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Other literature type . Article . 2008

Enumeration and Characterization of Arsenic-Tolerant Diazotrophic Bacteria in a Long-Term Heavy-Metal-Contaminated Soil

A. Oliveira; M. E. Pampulha; M. M. Neto; A. C. Almeida;