publication . Master thesis . 2017

Operational Analysis of Distribution Systems Featuring Large-scale Variable RES: Contributions of Energy Storage Systems and Switchable Capacitor Banks

Mário Pascoal Santos Pereira;
Open Access English
  • Published: 10 Jul 2017
  • Country: Portugal
Abstract
In the last decade, the level of variable renewable energy sources (RESs) integrated in distribution network systems have been continuously growing. This adds more uncertainty to these systems, which also face many traditional sources of uncertainty, and those pertaining to other emerging technologies such as demand response and electric vehicles. As a result, distribution system operators are finding it increasingly difficult to maintain an optimal operation of such network systems. These challenges/limitations are, however, expected to be alleviated when distribution systems undergo the transformation process to smart grids, equipped with appropriate technolog...
Subjects
free text keywords: Engenharia electrotécnica, electrónica e informática, Electrical engineering, Electronic engineering, Information engineering, :Engenharia electrotécnica, electrónica e informática [Ciências da engenharia e tecnologias], :Electrical engineering, Electronic engineering, Information engineering [Engineering and technology]
Related Organizations
Funded by
FCT| UID/CEC/50021/2013
Project
UID/CEC/50021/2013
Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. (FCT)
  • Project Code: 147282
  • Funding stream: 5876
,
EC| SINGULAR
Project
SINGULAR
Smart and Sustainable Insular Electricity Grids Under Large-Scale Renewable Integration
  • Funder: European Commission (EC)
  • Project Code: 309048
  • Funding stream: FP7 | SP1 | ENERGY
,
FCT| UID/EMS/00151/2013
Project
UID/EMS/00151/2013
Centre for Mechanical and Aerospace Science and Technologies
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. (FCT)
  • Project Code: 147350
  • Funding stream: 5876
37 references, page 1 of 3

1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Integration of RES in Electric Power Systems 5 2.1 European Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Installed capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Energy production in the European Union . . . . . . . . . . . . . . . . . 6 2.1.3 RES share evolution in the EU-28 . . . . . . . . . . . . . . . . . . . . . 6 2.2 DG and RES Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Technologies for Mitigating the Effects of RESs . . . . . . . . . . . . . . . . . . 9 2.3.1 Energy storage systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 Switchable capacitor banks . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.3 The future development of RES . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Mathematical Formulation 13 3.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Kirchhoff's voltage law . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 Power flow limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.3 Line losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.4 Active and reactive load balances . . . . . . . . . . . . . . . . . . . . . 16 3.2.5 Energy storage model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.6 DG active and reactive power limits . . . . . . . . . . . . . . . . . . . . 18 3.2.7 Reactive power limits at substation . . . . . . . . . . . . . . . . . . . . . 19 3.2.8 Reactive power limits of capacitor banks . . . . . . . . . . . . . . . . . 19 3.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

[1] B. Muruganantham, R. Gnanadass, and N. Padhy, “Challenges with renewable energy sources and storage in practical distribution systems,” Renewable and Sustainable Energy Reviews, vol. 73, pp. 125-134, June 2017. [OpenAIRE]

[2] S. Nandi, P. Biswas, V. N. Nandakumar, and R. K. Hedge, “Two novel schemes suitable for static switching of three-phase delta-connected capacitor banks with minimum surge current,” IEEE Transactions on Industry Applications, vol. 33, no. 5, pp. 1348-1354, 1997.

[3] H. Nosair and F. Bouffard, “Flexibility Envelopes for Power System Operational Planning,” IEEE Transactions on Sustainable Energy, vol. 6, pp. 800-809, July 2015. [OpenAIRE]

[4] W. A. Bukhsh, C. Zhang, and P. Pinson, “An Integrated Multiperiod OPF Model With Demand Response and Renewable Generation Uncertainty,” IEEE Transactions on Smart Grid, vol. 7, pp. 1495-1503, May 2016.

[5] M. Masoum, A. Jafarian, M. Ladjevardi, E. Fuchs, and W. Grady, “Fuzzy Approach for Optimal Placement and Sizing of Capacitor Banks in the Presence of Harmonics,” IEEE Transactions on Power Delivery, vol. 19, pp. 822-829, Apr. 2004. [OpenAIRE]

[6] B. Zakeri and S. Syri, “Electrical energy storage systems: A comparative life cycle cost analysis,” Renewable and Sustainable Energy Reviews, vol. 42, pp. 569-596, Feb. 2015. [OpenAIRE]

[7] A. Colmenar-Santos, C. Reino-Rio, D. Borge-Diez, and E. ColladoFerna´ndez, “Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 1130-1148, June 2016. [OpenAIRE]

[8] P. Poonpun and W. Jewell, “Analysis of the Cost per Kilowatt Hour to Store Electricity,” IEEE Transactions on Energy Conversion, vol. 23, pp. 529-534, June 2008. [OpenAIRE]

[9] M. H. Tushar and C. Assi, “Volt-VAR Control through Joint Optimization of Capacitor Bank Switching, Renewable Energy, and Home Appliances,” IEEE Transactions on Smart Grid, pp. 1-1, 2017.

[10] S. Soto and V. Hinojosa, “Stochastic optimal allocation of reactive power banks for system loss minimization,” IEEE Latin America Transactions, vol. 14, no. 4, pp. 1980-1987, 2016.

[11] K. Hur and S. Santoso, “Distance Estimation of Switched Capacitor Banks in Utility Distribution Feeders,” IEEE Transactions on Power Delivery, vol. 22, pp. 2419-2427, Oct. 2007.

[12] S. Santoso, “On Determining the Relative Location of Switched Capacitor Banks,” IEEE Transactions on Power Delivery, vol. 22, pp. 1108- 1116, Apr. 2007.

37 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue