publication . Article . 2008

Evolution of mechanical properties and final textural properties of resorcinol-formaldehyde xerogels during ambient air drying

Leonard, Angélique; Blacher, S.; Crine, M.; Jomaa, W.;
Open Access
  • Published: 01 Jan 2008 Journal: Journal of Non-Crystalline Solids, volume 354, pages 831-838 (issn: 0022-3093, Copyright policy)
  • Publisher: Elsevier BV
Abstract
Porous carbon xerogels can be obtained by convective drying of resorcinol (R)-formaldehyde (F) hydrogels, followed by pyrolysis. Drying conditions have to be carefully controlled when crack-free monoliths with well-defined shape and size are required. The knowledge of the mechanical properties of the RF xerogels and their evolution with water content is essential to model their thermo-hygro-mechanical behavior during convective drying and avoid mechanical stresses leading to deformation and cracking of the sample. The shrinkage behavior and the mechanical properties of RF xerogels obtained with R/C ratio ranging from 300 to 1500 were investigated. R/C greatly in...
Subjects
free text keywords: drying, texture, resorcinol-formaldehyde xerogels, mechanical properties, : Chemical engineering [Engineering, computing & technology], : Ingénierie chimique [Ingénierie, informatique & technologie], : Materials science & engineering [Engineering, computing & technology], : Science des matériaux & ingénierie [Ingénierie, informatique & technologie], Viscosity, Composite material, Self-healing hydrogels, Pyrolysis, Microstructure, Porosimetry, Shrinkage, Stress relaxation, Materials science, Viscoelasticity, [PHYS.MECA]Physics [physics]/Mechanics [physics], [SPI]Engineering Sciences [physics]
45 references, page 1 of 3

[1] R.W. Pekala, J. Mater. Sci. 24 (1989), p. 3221.

[2] R.W. Pekala and F.M. Kong, Rev. Phys. Appl. 24 (1989), p. 33.

[3] S. Sircar, T.C. Golden and M.B. Rao, Carbon 34 (1996), p. 1.

[4] T. Yamamoto, A. Endo, T. Ohmori and M. Nakaiwa, Carbon 42 (2004), p. 1671.

[5] M. Sanchez-Polo, J. Rivera-Utrilla and U. von Gunten, Wat. Res. 40 (2006), p. 3375.

[6] M.N. Padilla-Serrano, F.J. Maldonado-Hodar and C. Moreno-Castilla, Appl. Catal. B-Environ. 61 (2005), p. 253.

[7] C. Moreno-Castilla and F.J. Maldonado-Hodar, Carbon 43 (2005), p. 455.

[8] W. Li, G. Reichenauer and J. Fricke, Carbon 40 (2002), p. 2955.

[9] J. Li, X. Wang, Q. Huang, S. Gamboa and P.J. Sebastian, J. Power Sources 158 (2006), p. 784.

[10] R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller and B. Dunn, J. Non-Cryst. Solids 225 (1998), p. 74.

[11] E. Frackowiak and F. Beguin, Carbon 39 (2001), p. 937.

[12] B. Mathieu, S. Blacher, R. Pirard, J.P. Pirard, B. Sahouli and F. Brouers, J. NonCryst. Solids 212 (1997), p. 250.

[13] N. Job, R. Pirard, J. Marien and J.P. Pirard, Carbon 42 (2004), p. 619.

[14] T. Yamamoto, T. Nishimura, T. Suzuki and H. Tamon, Dry. Technol. 19 (2004), p. 1319.

[15] T. Yamamoto, T. Nishimura, T. Suzuki and H. Tamon, Carbon 39 (2001), p. 2374.

45 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2008

Evolution of mechanical properties and final textural properties of resorcinol-formaldehyde xerogels during ambient air drying

Leonard, Angélique; Blacher, S.; Crine, M.; Jomaa, W.;