publication . Article . 2000

Thermal decomposition of solid mixtures of 2-oxy-4,6-dinitramine-s-triazine (DNAM) and phase stabilized ammonium nitrate (PSAN)

J.L. Campos; L. M. Pedroso; Pedro Simões; António Portugal;
Open Access English
  • Published: 01 Jan 2000
  • Country: Portugal
Abstract
The thermal decomposition of solid mixtures of 2-oxy-4,6-dinitramine-s-triazine (DNAM) and phase stabilized ammonium nitrate (PSAN) at different mass ratios has been studied. Simultaneous thermal analysis (DSC/TG) and thermomicroscopy have been used. It was found that PSAN promotes the lowering of the decomposition temperature of DNAM. The beginning of this process occurs when both components are in the solid state irrespective of the composition. However, the composition appears as the main factor determining the process progression once initiated. These observations are interpreted in the light of known properties of both DNAM and PSAN. Non-isothermal kinetic ...
Subjects
free text keywords: Dinitroammeline (DNAM), Non-isothermal kinetic analysis, Phase stabilized ammonium nitrate (PSAN), Thermal decomposition, Thermomicroscopy, Physical and Theoretical Chemistry, Instrumentation, Condensed Matter Physics, Thermogravimetry, Ammonium nitrate, chemistry.chemical_compound, chemistry, Differential scanning calorimetry, Thermal analysis, dNaM, Analytical chemistry, Chemical process of decomposition, Stereochemistry, Arrhenius equation, symbols.namesake, symbols
Related Organizations
32 references, page 1 of 3

[1] P. SimoÄes, A. Portugal, J. Campos, Thermochim. Acta 298 (1997) 95.

[2] P. SimoÄes, P. Carvalheira, L. DuraÄes, A. Portugal, J. Campos, Proceedings of the 22nd International Pyrotechnics Seminar, Fort Collins, CO, USA, 15±19 July 1996, pp. 389±396.

[3] P. SimoÄes, P. Carvalheira, A. Portugal, J. Campos, L. DuraÄes, J. GoÂis, Proceedings of the 27th International Annual Conference of ICT, Karlsrhue, Federal Republic of Germany, 25±28 June 1996, pp. 136/1±136/13.

[4] N. Koga, H. Tanaka, Thermochim. Acta 240 (1994) 141.

[5] V.A. Koroban, Y.N. Burtsev, F.R. Alimov, A.D. Haustov, V.A. Dubovik, V.A. Teselkin, Propellants, Explosives and Pyrotechnics 19 (1994) 307.

[6] T.B. Brill, P.J. Brush, D.G. Patil, Combustion and Flame 92 (1993) 178.

[7] N. Koga, H. Tanaka, Thermochim. Acta 209 (1992) 127.

[8] D.G. Patil, S.R. Jain, T.B. Brill, Propellants, Explosives and Pyrotechnics 17 (1992) 99.

[9] K.R. Brower, J.C. Oxley, M. Tewari, J. Phys. Chem. 93 (1989) 4029.

[10] T.P. Russell, T.B. Brill, Combustion and Flame 76 (1989) 393.

[11] W.A. Rosser, S.H. Inami, H. Wise, J. Phys. Chem. 67 (1963) 1753.

[12] P.N. SimoÄes, L.M. Pedroso, A.A. Portugal, J.L. Campos, Thermochim. Acta 319 (1998) 55.

[13] P. Carvalheira, G.M.H.J.L. Gadiot, W.P.C. Klerk, Thermochim. Acta 269/270 (1995) 273.

[14] S.R. Jain, K.C. Adiga, V.R.P. Verneker, Combustion and Flame 40 (1981) 71.

[15] E.R. Atkinson, J. Am. Chem. Soc. 73 (1951) 4443.

32 references, page 1 of 3
Any information missing or wrong?Report an Issue