publication . Article . 2006

Conformational cooling and conformation selective aggregation in dimethyl sulfite isolated in solid rare gases

Rui Fausto; Andrea Gómez-Zavaglia; Andrea Gómez-Zavaglia; Ana Borba;
Open Access
  • Published: 01 Jan 2006 Journal: Journal of Molecular Structure, volume 794, pages 196-203 (issn: 0022-2860, Copyright policy)
  • Publisher: Elsevier BV
  • Country: Portugal
Abstract
Dimethyl sulfite has three conformers of low energy, GG, GT and GG0, which have significant populations in the gas phase at room temperature. According to theoretical predictions, the GT and GG0 conformers are higher in energy than the GG conformer by 0.83 and 1.18 kJ molK1, respectively, while the barriers associated with the GG0/GT and GT/GG isomerizations are 1.90 and 9.64 kJ molK1, respectively. Experimental data obtained for the compound isolated in solid argon, krypton and xenon demonstrated that the GG0/GT energy barrier is low enough to allow an extensive conversion of the GG0 form into the GT conformer during deposition of the matrices, the extent of th...
Subjects
free text keywords: Matrix isolation FTIR Spectroscopy, Conformational cooling, Conformation selective aggregation, Substrate (chemistry), Chemistry, Krypton, chemistry.chemical_element, Analytical chemistry, Dimethyl sulfite, chemistry.chemical_compound, Physical chemistry, Conformational isomerism, Argon, Noble gas, Xenon, Isomerization
Funded by
FCT| SFRH/BPD/11499/2002
Project
SFRH/BPD/11499/2002
LOW TEMPERATURE STORAGE OF BIOLOGICAL MATERIAL: PHYSICOCHEMICAL CHARACTERIZATION OF CRYOPROTECTIVE AGENTS
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. (FCT)
  • Project Code: SFRH/BPD/11499/2002
  • Funding stream: SFRH | Pós-Doutoramento
20 references, page 1 of 2

[1] H. Woerden, Chem. Rev. 63 (1963) 557.

[2] A. Gawienowski, M. Stacewicz-Sapuntzakis, Behav. Biol. 23 (1978) 267.

[3] J. Grabowski, R. Lum, J. Am. Chem. Soc. 112 (1990) 607.

[4] L. Cazaux, J.D. Bastide, G. Chassaing, P. Maroni, Spectrochim. Acta, Part A 35 (1979) 15.

[5] L. Cazaux, G. Chassaing, P. Maroni, Spectrochim. Acta, Part A 40 (1984) 519.

[6] A.B. Remizov, A.I. Fishman, I.S. Pominov, Spectrochim. Acta, Part A 35 (1979) 901.

[7] P. Klaeboe, Acta Chem. Scand. 22 (1968) 2817.

[8] R.L. Odeurs, B.J. Van der Veken, M.A. Herman, J. Mol. Struct. 79 (1982) 451.

[9] A.J. Barnes, B.J. Van der Veken, J. Mol. Struct. 157 (1987) 119.

[10] A. Borba, A. Go´mez-Zavaglia, P.N.N.L. Simo˜es, R. Fausto, J. Phys. Chem. A 109 (2005) 3578.

[11] A.J. Barnes, J. Mol. Struct. 113 (1984) 161.

[12] I.D. Reva, S. Stepanian, L. Adamowicz, R. Fausto, J. Phys. Chem. A 107 (2003) 6351.

[13] I.D. Reva, S. Stepanian, L. Adamowicz, R. Fausto, Chem. Phys. Lett. 374 (2003) 631.

[14] I. Reva, S. Ilieva, R. Fausto, Phys. Chem. Chem. Phys. 3 (2001) 4235.

[15] A. Go´mez-Zavaglia, R. Fausto, Phys. Chem. Chem. Phys. 5 (2003) 52. [OpenAIRE]

20 references, page 1 of 2
Any information missing or wrong?Report an Issue