Embedded nonlinear model predictive control for obstacle avoidance using PANOC

Conference object English OPEN
Sathya, Ajay Suresha ; Sopasakis, Pantelis ; Van Parys, Ruben ; Themelis, Andreas ; Pipeleers, Goele ; Patrinos, Panos (2018)
  • Subject: Obstacle avoidance | Nonlinear model pre- dictive control | Embedded optimization
    arxiv: Computer Science::Robotics

We employ the proximal averaged Newton-type method for optimal control (PANOC) to solve obstacle avoidance problems in real time. We introduce a novel modeling framework for obstacle avoidance which allows us to easily account for generic, possibly nonconvex, obstacles involving polytopes, ellipsoids, semialgebraic sets and generic sets described by a set of nonlinear inequalities. PANOC is particularly well-suited for embedded applications as it involves simple steps, its implementation comes with a low memory footprint and its fast convergence meets the tight runtime requirements of fast dynamical systems one encounters in modern mechatronics and robotics. The proposed obstacle avoidance scheme is tested on a lab-scale autonomous vehicle.
Share - Bookmark

  • Download from
    Lirias via Lirias (Conference object, 2018)
  • Cite this publication