Flexible chain molecules in the marginal and concentrated regimes: universal static scaling laws and cross-over predictions

Article Spanish; Castilian OPEN
Laso Carbajo, Manuel ; Karayiannis, Nikos Ch. (2008)
  • Publisher: E.T.S.I. Industriales (UPM)
  • Journal: (issn: Journal of Chemical Physics, ISSN 0021-9606, 2008-05, Vol. 128, No. 17)
  • Related identifiers: doi: 10.1063/1.2912189
  • Subject: Química | Telecomunicaciones

We present predictions for the static scaling exponents and for the cross-over polymer volumetric fractions in the marginal and concentrated solution regimes. Corrections for finite chain length are made. Predictions are based on an analysis of correlated fluctuations i... View more
  • References (56)
    56 references, page 1 of 6

    1 P. J. Flory, Statistical Mechanics of Chain Molecules Hanser Verlag, Munich, 1989 .

    2 P. G. de Gennes, Scaling Concepts in Polymer Physics Cornell University Press, Ithaca, 1980 .

    3 M. Doi and S. F. Edwards, The Theory of Polymer Dynamics Clarendon, Oxford, 1989 .

    4 M. Daoud, J. P. Cotton, B. Farnoux, G. Jannink, G. Sarma, H. Benoit, R. Duplessix, C. Picot, and P. G. de Gennes, Macromolecules 8, 804 1975 .

    5 J. P. Cotton, M. Nierlich, F. Boué, M. Daoud, B. Farnoux, G. Jannink, R. Duplessix, and C. Picot, J. Chem. Phys. 65, 1101 1976 .

    6 B. Farnoux, F. Boue, J. P. Cotton, M. Daoud, G. Jannink, M. Nierlich, and P. G. de Gennes, J. Phys. France 39, 77 1978 .

    7 We follow the widespread convention of using N no subindex for a generic chain length in a scaling law. It should not cause confusion with the number of chains Ni of a particular length i.

    8 W. Paul, K. Binder, D. W. Heermann, and K. Kremer, J. Phys. II 1, 37 1991 .

    9 P. Cifra and T. Bleha, Polymer 34, 4924 1993 .

    10 A. Yethiraj and C. K. Hall, J. Chem. Phys. 96, 797 1991 ; A. Yethiraj and R. Dickman, ibid. 97, 4468 1992 .

  • Metrics
    No metrics available
Share - Bookmark