Controlling variability in split–merge systems and its impact on performance
 Publisher: Springer Nature
 Journal: Annals of Operations Research

Related identifiers: doi: 10.1007/s1047901415603 
Subject: Decision Sciences(all)  Management Science and Operations Research

References
(29)
Ali, M. M., & Gabere, M. N. (2010). A simulated annealing driven multistart algorithm for bound constrained global optimization. Journal of Computational and Applied Mathematics, 223(10), 26612674.
Baccelli, F., Makowski, A. M., & Shwartz, A. (1989). The forkjoin queue and related systems with synchronization constraints: Stochastic ordering and computable bounds. Advances in Applied Probability, 21(3), 629660.
Baccelli, F., Massey, W. A., & Towsley, D. (1989). Acyclic forkjoin queuing networks. Journal of the ACM, 36(3), 615642.
Bolch, G., et al. (2006). Queueing networks and Markov chains. Hoboken, NJ: Wiley.
Brent, R. P. (2002). An algorithm with guaranteed convergence for finding a zero of a function. Algorithms for minimization without derivatives, Dover Books on Mathematics. Mineola, NY: Dover Publications.
Brent, R. P. (1971). An algorithm with guaranteed convergence for finding a zero of a function. The Computer Journal, 14(4), 422425.
Burden, E. F., & Burden, R. L. (2006). Numerical methods. Cram101 textbook outlines (3rd ed.). Ventura, CA: Academic Internet Publishers.
Cao, G., & West, M. (1997). Computing distributions of order statistics. Communications in Statistics, 26(3), 755764.
David, H. A. (1980). Order statistics. Wiley series in probability and mathematical statistics. New York: Wiley.
David, H. A., & Nagaraja, H. N. (2005). The nonIID case. Order statistics (3rd ed., pp. 95120). New York: Wiley.

Similar Research Results
(6)

Metrics
No metrics available

 Download from


Cite this publication