<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Käesoleva magistritöö eesmärgiks on välja selgitada otstarbekad meetodid krediidiriski hindamiseks, kui argumenttunnused on valdavalt kategoriaalsed. Töös võrreldakse nelja erinevat prognoosimudelit – logistilist regressiooni, LASSO regressiooni, klassifitseerimispuud ning gradient boosting algoritmi. Töös kasutatav andmestik sisaldab infot väikelaenu saanud isikute kohta ning uuritavaks tunnuseks on laenu staatus, mis kirjeldab, kas laen on krediidiasutusele tagastatud või mitte.
LASSO regressioon, credit risk, logistic regression, logistiline regressioon, kategoriaalsed tunnused, krediidirisk, klassifitseerimispuu, gradient boosting, LASSO regression, categorical variables, classification tree
LASSO regressioon, credit risk, logistic regression, logistiline regressioon, kategoriaalsed tunnused, krediidirisk, klassifitseerimispuu, gradient boosting, LASSO regression, categorical variables, classification tree
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |