publication . Doctoral thesis . 2013

Personnel preferences in personnel planning and scheduling

van der Veen, Egbert;
Open Access
  • Published: 22 Nov 2013
  • Publisher: University Library/University of Twente
  • Country: Netherlands
Abstract
Summary The personnel of an organization often has two conflicting goals. Individual employees like to have a good work-life balance, by having personal preferences taken into account, whereas there is also the common goal to work efficiently. By applying techniques and methods from Operations Research, a subfield of applied mathematics, we show that operational efficiency can be achieved while taking personnel preferences into account. In the design of optimization methods, we explicitly consider that these methods should enable the business users to understand and effectively steer the outcomes of these methods. Designing such methods, and applying these to pe...
Subjects
free text keywords: Operations research, Personnel planning, Personnel scheduling, Personnel preferences
Related Organizations
Funded by
NWO| Logistical Design for Optimal Care (LogiDOC)
Project
  • Funder: Netherlands Organisation for Scientific Research (NWO) (NWO)
  • Project Code: 2300149170
101 references, page 1 of 7

2 Research Relevance and Outline 1 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.2 Personnel preferences in personnel planning and scheduling . . . . 2 2.3 The role of Operations Research . . . . . . . . . . . . . . . . . . . . . 4 2.4 Research environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.5 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Terminology and Literature Survey 9 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1 Personnel planning . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.2 Offline personnel scheduling . . . . . . . . . . . . . . . . . . . 12 3.2.3 Online personnel scheduling . . . . . . . . . . . . . . . . . . . 13 3.3 Personnel preferences and characteristics . . . . . . . . . . . . . . . 14 3.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.1 Mathematical programming . . . . . . . . . . . . . . . . . . . 17 3.4.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Cost-Efficient Staffing under Annualized Hours 25 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4.1 Mathematical programming . . . . . . . . . . . . . . . . . . . 28 4.4.2 Modeling employee contracts . . . . . . . . . . . . . . . . . . 31 4.4.3 Model extensions . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.5 Business questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Staffing under Annualized Hours Using Cross-Entropy Optimization 41 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.4 Cross-Entropy optimization . . . . . . . . . . . . . . . . . . . . . . . . 45 5.5 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.5.1 Annualized hours for given employees . . . . . . . . . . . . . 49 5.5.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5.3 Feasibility conditions . . . . . . . . . . . . . . . . . . . . . . . 50 5.5.4 Repair functions . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5.5 Software implementation . . . . . . . . . . . . . . . . . . . . . 52 5.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.6.1 Test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.6.2 Solving time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.6.3 Solution quality . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.7 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Shift Rostering Using Decomposition: Assign Days Off First 61 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3.1 The shift rostering problem . . . . . . . . . . . . . . . . . . . . 63 6.3.2 The benchmark instances . . . . . . . . . . . . . . . . . . . . . 65 6.4 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.4.1 Relations between the models . . . . . . . . . . . . . . . . . . 67 6.4.2 Modeling the constraints . . . . . . . . . . . . . . . . . . . . . 68 6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.5.1 Assessment of the decomposition approaches . . . . . . . . . 73 6.5.2 Detailed analysis of the results . . . . . . . . . . . . . . . . . 74 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Shift Rostering Using Decomposition: Assign Weekend Shifts First 79 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.2 Problem assumptions and formulation . . . . . . . . . . . . . . . . . . 81 7.3 Solution approach and modeling . . . . . . . . . . . . . . . . . . . . . 83 7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.3.2 Decomposition in shift rostering . . . . . . . . . . . . . . . . . 84 7.3.3 The weekend rostering problem . . . . . . . . . . . . . . . . . 84 7.3.4 Weekday shift assignment . . . . . . . . . . . . . . . . . . . . 90 7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.4.1 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.4.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . 93 7.4.3 Case study results . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.4.4 Benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 Shift Rostering from Staffing Levels: a Branch-and-Price Approach 101 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9 An Iterative Improvement Heuristic to Support Self-Scheduling 113 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 9.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 9.3 Problem description and principal approach . . . . . . . . . . . . . . 116 9.3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . 116 9.3.2 Principal approach . . . . . . . . . . . . . . . . . . . . . . . . 117 9.4 Realization of the approach . . . . . . . . . . . . . . . . . . . . . . . . 119 9.4.1 Swap selection model . . . . . . . . . . . . . . . . . . . . . . . 119 9.4.2 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.4.3 Extensions and discussion . . . . . . . . . . . . . . . . . . . . 121 9.5 Case studies and results . . . . . . . . . . . . . . . . . . . . . . . . . . 122 9.5.1 Criteria from practice . . . . . . . . . . . . . . . . . . . . . . . 122 9.5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 123 9.5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 124 9.6 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . 127 9.7 Appendix. Detailed results . . . . . . . . . . . . . . . . . . . . . . . . 129 [173] Li Y., Chen J., and Cai X., (2007). An integrated staff-sizing approach considering feasibility of scheduling decision. Annals of Operations Research, 155(1):361-390.

[175] Lu Z. and Hao J.K., (2012). Adaptive neighborhood search for nurse rostering. European Journal of Operational Research, 218(3):865-876.

[176] Lusa A., Corominas A., and Muñoz N., (2008). A multistage scenario optimisation procedure to plan annualised working hours under demand uncertainty. International Journal of Production Economics, 113(2):957-968. [OpenAIRE]

[177] Lusa A., Corominas A., Olivella J., and Pastor R., (2009). Production planning under a working time accounts scheme. International Journal of Production Research, 47(13):3435-3451. [OpenAIRE]

[178] Lusa A., Corominas A., and Pastor R., (2008). An exact procedure for planning holidays and working time under annualized hours considering cross-trained workers with different efficiencies. International Journal of Production Research, 46(8):2123- 2142. [OpenAIRE]

[179] Lusa A. and Pastor R., (2011). Planning working time accounts under demand uncertainty. Computers & Operations Research, 38(2):517-524. [OpenAIRE]

[180] Maenhout B. and Vanhoucke M., (2006). New computational results for the nurse scheduling problem: A scatter search algorithm. In 6th European Conference on Evolutionary Computation in Combinatorial Optimization, vol. 3906, pp. 159-170. Lecture Notes in Computer Science.

[181] Maenhout B. and Vanhoucke M., (2008). Comparison and hybridization of crossover operators for the nurse scheduling problem. Annals of Operations Research, 159(1):333-353. [OpenAIRE]

101 references, page 1 of 7
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue