The dynamics of Leidenfrost drops

Doctoral thesis English OPEN
van Limbeek, Michiel Antonius Jacobus;
(2017)
  • Publisher: Universiteit Twente
  • Subject: METIS-320093 | IR-102780

Temperature control is omnipresent in today’s life: from keeping your fridge cold, maintaining a room at a pleasant temperature or preventing your computer from overheating. Efficient ways of heat transfer are often based on phase change, making use of the high latent h... View more
  • References (112)
    112 references, page 1 of 12

    [1] A. Bejan, Heat Transfer. New York: John Wiley @ Sons, Inc., 1st ed., 1993.

    [2] Z. Tamura and Y. Tanasawa, “Evaporation and combustion of a drop contacting with a hot surface,” in Symposium (Int.) on Combustion, vol. 7, pp. 509-522, Elsevier, 1958.

    [3] A. A. Mills and J. D. Fry, “Rate of evaporation of hydrocarbons from a hot surface: Nukiyama and Leidenfrost temperatures,” Eur. J. Physics, vol. 3, no. 3, p. 152, 1982.

    [4] A.-L. Biance, C. Clanet, and D. Quéré, “Leidenfrost drops,” Phys. Fluids, vol. 15, no. 6, pp. 1632-1637, 2003.

    [5] H. Boerhaave, Elementa Chemiae. Lugdunum Batavorom, 1732.

    [8] T. Tran, H. J. J. Staat, A. Prosperetti, C. Sun, and D. Lohse, “Drop Impact on Superheated Surfaces,” Phys. Rev. Let., vol. 108, no. 3, p. 036101, 2012.

    [9] G. K. Batchelor, An introduction to fluid dynamics. Cambridge university press, 2000.

    [14] J. H. Snoeijer, P. Brunet, and J. Eggers, “Maximum size of drops levitated by an air cushion,” Phys. Rev. E, vol. 79, p. 036307, 2009.

    [15] D. Quéré, “Leidenfrost Dynamics,” Ann. Rev. Fluid Mech., vol. 45, no. 1, pp. 197- 215, 2013.

    [16] B. Sobac, A. Rednikov, S. Dorbolo, and P. Colinet, “Leidenfrost effect: Accurate drop shape modeling and refined scaling laws,” Phys. Rev. E, vol. 90, no. 5, p. 053011, 2014.

  • Related Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark