publication . Article . 2017

Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle.

Hendriks, Frank C.; Mohammadian, Sajjad; Ristanović, Zoran; Kalirai, Sam; Meirer, Florian; Vogt, Eelco T. C.; Bruijnincx, Pieter C. A.; Gerritsen, Hans C.; Weckhuysen, Bert M.;
Open Access English
  • Published: 20 Nov 2017
  • Country: Netherlands
Abstract
Abstract Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single‐molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure–reactivity information was obtained for 100 nm thin, microtomed sections of a single FCC catalyst particle using this novel SMF‐TEM high‐resolution combination. High reactivity in a thiophene oligomerization probe reaction correlated well wit...
Subjects
free text keywords: electron microscopy, heterogeneous catalysis, single-molecule microscopy, structure–activity relationships, zeolites, Communication, Communications, Heterogeneous Catalysis | Very Important Paper, Chemistry, Zeolite, Particle, Transmission electron microscopy, Amorphous solid, Thiophene, chemistry.chemical_compound, Inorganic chemistry, Crystallography, Chemical engineering, Single-molecule experiment, Nanomaterials, Microscopy
Related Organizations
Funded by
NWO| Superresolution Optical Microscopy Integrated in a TEM
Project
  • Funder: Netherlands Organisation for Scientific Research (NWO) (NWO)
  • Project Code: 2300177192
,
EC| NANOINSPECTION
Project
NANOINSPECTION
Near-Field Spectroscopic Imaging of the Assembly and Working of Nanosheets of Catalytic Porous Materials
  • Funder: European Commission (EC)
  • Project Code: 321140
  • Funding stream: FP7 | SP2 | ERC
33 references, page 1 of 3

1 J. H.Gary, G. E.Handwerk, M. J.Kaiser, in Petroleum Refining: Technology and Economics, CRC, New York, 2007, p. 115.

2 E. T. C.Vogt, B. M.Weckhuysen, Chem. Soc. Rev.2015, 44, 7342–7370.26382875 [OpenAIRE] [PubMed]

3 C.Perego, R.Millini, Chem. Soc. Rev.2013, 42, 3956–3976.23132427 [PubMed]

4 C.Martínez, A.Corma, Coord. Chem. Rev.2011, 255, 1558–1580.

5 Z.Ristanović, M. M.Kerssens, A. V.Kubarev, F. C.Hendriks, P.Dedecker, J.Hofkens, M. B. J.Roeffaers, B. M.Weckhuysen, Angew. Chem. Int. Ed.2015, 54, 1836–1840;

6 J. C.da Silva, K.Mader, M.Holler, D.Haberthür, A.Diaz, M.Guizar-Sicairos, W.-C.Cheng, Y.Shu, J.Raabe, A.Menzel, et al., ChemCatChem 2015, 7, 413–416.26191088 [OpenAIRE] [PubMed]

7 F.Meirer, S.Kalirai, D.Morris, S.Soparawalla, Y.Liu, G.Mesu, J. C.Andrews, B. M.Weckhuysen, Sci. Adv.2015, 1, e 1400199.

8Á.Ibarra, A.Veloso, J.Bilbao, J. M.Arandes, P.Castaño, Appl. Catal. B 2016, 182, 336–346.

9 Y.Liu, F.Meirer, C. M.Krest, S.Webb, B. M.Weckhuysen, Nat. Commun.2016, 7, 12634.27572475 [OpenAIRE] [PubMed]

10 S.Kalirai, P. P.Paalanen, J.Wang, F.Meirer, B. M.Weckhuysen, Angew. Chem. Int. Ed.2016, 55, 11134–11138;

11 G.Agostini, C.Lamberti, L.Palin, M.Milanesio, N.Danilina, B.Xu, M.Janousch, J. A.van Bokhoven, J. Am. Chem. Soc.2010, 132, 667–678.20000838 [PubMed]

12 A. V.Agronskaia, J. A.Valentijn, L. F.van Driel, C. T. W. M.Schneijdenberg, B. M.Humbel, P. M. P.van Bergen en Henegouwen, A. J.Verkleij, A. J.Koster, H. C.Gerritsen, J. Struct. Biol.2008, 164, 183–189.18664385 [PubMed]

13 M. A.Karreman, I. L. C.Buurmans, J. W.Geus, A. V.Agronskaia, J.Ruiz-Martínez, H. C.Gerritsen, B. M.Weckhuysen, Angew. Chem. Int. Ed.2012, 51, 1428–1431;

14 M. A.Karreman, I. L. C.Buurmans, A. V.Agronskaia, J. W.Geus, H. C.Gerritsen, B. M.Weckhuysen, Chem. Eur. J.2013, 19, 3846–3859.23447400 [PubMed]

15 J.Michaelis, C.Bräuchle, Chem. Soc. Rev.2010, 39, 4731–4740.20972499 [PubMed]

33 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue