Detection of early squats by axle box acceleration
- Published: 09 Jan 2013
- Country: Netherlands
6. IMPROVEMENTS OF THE ABA MEASURING SYSTEM .............................................. 79 6.1. Introduction ........................................................................................................ 79 6.2. Wheel vibrations ................................................................................................ 79 6.2.1. Modes of vibration of the wheel ............................................................ 79 6.2.2. Transfer function .................................................................................... 81 6.3. ABA measurements with improved instrumentation ........................................ 83 6.4. Improvement of signal processing of ABA ......................................................... 84 6.4.1. Noise reduction ...................................................................................... 84 6.4.2. Effect of noise reduction on the detection of light squats .................... 85 6.4.3. Reduction of the influence of wheels' defect on ABA ........................... 87 6.5. Hit rate of light squats ........................................................................................ 90 6.6. Conclusions ......................................................................................................... 90
[13] D. F. Cannon and H. Pradier, “Rail rolling contact fatigue Research by the European Rail Research Institute,” Wear, vol. 191, no. 1-2, pp. 1-13, Jan. 1996.
[14] S. Bogdanski, M. Olzak, and J. Stupnicki, “Numerical stress analysis of rail rolling contact fatigue cracks,” Wear, vol. 191, no. 1-2, pp. 14-24, Jan. 1996.
[15] S. Bogdanski, M. Olzak, and J. Stupnicki, “Numerical modelling of a 3D rail RCF 'squat'‐ type crack under operating load,” Fatigue & Fracture of Engineering Materials & Structures, vol. 21, no. 8, pp. 923-935, Aug. 1998.
[16] S. Bogdanski and P. Lewicki, “3D model of liquid entrapment mechanism for rolling contact fatigue cracks in rails,” Wear, vol. 265, no. 9-10, pp. 1356-1362, Oct. 2008.
[17] Z. Li, X. Zhao, C. Esveld, R. Dollevoet, and M. Molodova, “An investigation into the causes of squats-Correlation analysis and numerical modeling,” Wear, vol. 265, no. 9- 10, pp. 1349-1355, Oct. 2008.
[18] Z. Li, X. Zhao, and R. Dollevoet, “The determination of a critical size for rail top surface defects to grow into squats,” in Proceedings of the 8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2009), Florence, Italy, 2009.
[19] Z. Li, X. Zhao, R. Dollevoet, and M. Molodova, “Differential wear and plastic deformation as causes of squat at track local stiffness change combined with other track short defects,” Vehicle System Dynamics, vol. 46, pp. 237-246, 2008. [OpenAIRE]
[20] A. F. Bower and K. L. Johnson, “Plastic flow and shakedown of the rail surface in repeated wheel‐rail contact,” Wear, vol. 144, no. 1-2, pp. 1-18, Apr. 1991.
[24] J. C. O. Nielsen, “High‐frequency vertical wheel‐rail contact forces‐‐Validation of a prediction model by field testing,” Wear, vol. 265, no. 9-10, pp. 1465-1471, Oct. 2008.
[25] A. Berry, B. Nejikovsky, X. Gibert, and A. Tajaddini, “High Speed Video Inspection of Joint Bars Using Advanced Image Collection and Processing Techniques,” in Proceedings of the 8th World Congress on Railway research, Seoul, Korea, 2008.
[26] C. Delprete and C. Rosso, “An easy instrument and a methodology for the monitoring and the diagnosis of a rail,” Mechanical Systems and Signal Processing, vol. 23, no. 3, pp. 940-956, Apr. 2009.
[27] S. L. Grassie, “Short wavelength rail corrugation: field trials and measuring technology,” Wear, vol. 191, no. 1-2, pp. 149-160, Jan. 1996.
[28] S. L. Grassie, “Measurement of railhead longitudinal profiles: a comparison of different techniques,” Wear, vol. 191, no. 1-2, pp. 245-251, Jan. 1996.
[29] R. B. Lewis, “Track‐recording techniques used on British Rail,” Electric Power Applications, IEE Proceedings B, vol. 131, no. 3, p. 73, 1984.