publication . Article . 2015

24-mu m spin relaxation length in boron nitride encapsulated bilayer graphene

J. Ingla-Aynés; M. H. D. Guimarães; R. J. Meijerink; P. J. Zomer; B. J. van Wees;
  • Published: 19 Nov 2015 Journal: Physical Review B, volume 92, issue 20 (issn: 1098-0121, eissn: 1550-235X, Copyright policy)
We have performed spin and charge transport measurements in dual gated high mobility bilayer graphene encapsulated in hexagonal boron nitride. Our results show spin relaxation lengths lambda(s) up to 13 mu m at room temperature with relaxation times tau(s) of 2.5 ns. At 4 K, the diffusion coefficient rises up to 0.52 m(2)/s, a value five times higher than the best achieved for graphene spin valves up to date. As a consequence, lambda(s) rises up to 24 mu m with tau(s) as high as 2.9 ns. We characterized three different samples and observed that the spin relaxation times increase with the device length. We explain our results using a model that accounts for the s...
free text keywords: ROOM-TEMPERATURE, LAYER GRAPHENE, TRANSPORT, SINGLE, Physics, Bilayer graphene, Boron nitride, chemistry.chemical_compound, chemistry, Lambda, Spin relaxation, Hexagonal boron nitride, Spin-½, Condensed matter physics, Graphene, law.invention, law, Nuclear magnetic resonance
Related Organizations
Funded by
Graphene-Based Revolutions in ICT And Beyond
  • Funder: European Commission (EC)
  • Project Code: 604391
  • Funding stream: FP7 | SP1 | ICT
EC| GrapheneCore1
Graphene-based disruptive technologies
  • Funder: European Commission (EC)
  • Project Code: 696656
  • Funding stream: H2020 | SGA-RIA
Spintronics in Graphene
  • Funder: European Commission (EC)
  • Project Code: 607904
  • Funding stream: FP7 | SP3 | PEOPLE
FET FP7FET Flagships: FET Flagships
FET FP7FET Flagships: Graphene-Based Revolutions in ICT And Beyond
23 references, page 1 of 2

[1] D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. Lett. 103, 146801 (2009). [OpenAIRE]

[2] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature (London) 448, 571 (2007).

[3] W. Han and R. K. Kawakami, Phys. Rev. Lett. 107, 047207 (2011).

[4] T.-Y. Yang, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, J. Samm, S. R. Ali, A. Pachoud, M. Zeng, M. Popinciuc, G. Gu¨ntherodt, B. Beschoten, and B. O¨ zyilmaz, Phys. Rev. Lett. 107, 047206 (2011).

[5] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Acta. Phys. Slovaca 57, 565 (2007).

[6] H. Ochoa, A. H. Castro Neto, and F. Guinea, Phys. Rev. Lett. 108, 206808 (2012).

[7] D. Kochan, M. Gmitra, and J. Fabian, Phys. Rev. Lett. 112, 116602 (2014).

[8] D. Van Tuan, F. Ortmann, D. Soriano, S. O. Valenzuela, and S. Roche, Nat. Phys. 10, 857 (2014).

[9] D. Kochan, S. Irmer, M. Gmitra, and J. Fabian, Phys. Rev. Lett. 115, 196601 (2015).

[10] Y. Song and H. Dery, Phys. Rev. Lett. 111, 026601 (2013).

[11] M. H. D. Guimara˜es, P. J. Zomer, J. Ingla-Ayne´s, J. C. Brant, N. Tombros, and B. J. van Wees, Phys. Rev. Lett. 113, 086602 (2014).

[12] M. Dro¨geler, F. Volmer, M. Wolter, B. Terrs, K. Watanabe, T. Taniguchi, G. Gntherodt, C. Stampfer, and B. Beschoten, Nano Lett. 14, 6050 (2014).

[13] See Supplemental Material at 10.1103/PhysRevB.92.201410 for detailed description of the device fabrication, transport measurements, determination of the mobility of the sample and room temperature results for device A.

[14] Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature (London) 459, 820 (2009).

[15] W. Han, J.-R. Chen, D. Wang, K. M. McCreary, H. Wen, A. G. Swartz, J. Shi, and R. K. Kawakami, Nano Lett. 12, 3443 (2012).

23 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue