Fundamentals of ergonomic exoskeleton robots

Doctoral thesis English OPEN
Schiele, A. (2008)

This thesis is the first to provide the fundamentals of ergonomic exoskeleton design. The fundamental theory as well as technology necessary to analyze and develop ergonomic wearable robots interacting with humans is established and validated by experiments and prototypes. The fundamentals are (1) a new theoretical framework for analyzing physical human robot interaction (pHRI) with exoskeletons, and (2) a clear set of design rules of how to build wearable, portable exoskeletons to easily and smoothly interact with varying users in a haptic telemanipulation scenario. The fundamentals aim at providing the basis for truly human compatible exoskeleton design from a human as well as technological perspective.
  • References (132)
    132 references, page 1 of 14

    Acosta, A. M., Benes, J. L., Haut, B. H., Gudukas, T. L., Laughlin, J. J., Saltzman, S. M., and Dewald, J. P. A. (2003). “Upper extremity multi-degree of freedom torque generating abilities in able-bodied individuals.” 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, pp. 1429-1432.

    Adelstein, B. D., and Rosen, J. M. (1992). “Design and Implementation of a Force Reflecting Manipulandum for Manual Control Research.” in Advances in Robotics, H. Kazerooni, Ed., American Society of Mechanical Engineers New York, pp. 1-12.

    Alami, R., Albu-Schaefer, A., Bicchi, A., Bischof, R., Chatila, R., Luca, A. D., Santis, A. D., Giralt, G., Guiochet, J., Hirzinger, G., Ingrand, F., Lippiello, V., Mattone, R., Powell, D., Sen, S., Siciliano, B., Tonietti, G., and Villani, L. (2006). “Safe and Dependable Physical Human-Robot Interaction in Anthropic Domains: State of the Art and Challenges.” presented at: IEEE International Conference on Intelligent Robots and Systems, IEEE, Beijing, China.

    Ambrose, R. O., Aldridge, H., Askew, R. S., Burridge, R. R., Bluethmann, W., Diftler, M., Lovchik, C., Magruder, D., and Rehnmark, F. (2000). “Robonaut: NASA's space humanoid.” IEEE Intelligent Systems and Their Applications, 15(4), pp. 57-63.

    Anderson, R. J., and Spong, M. W. (1989). “Bilateral Control of Teleoperators with Time Delay.” IEEE Transactions on Automatic Control, 34(5), pp. 494-501.

    Asanuma, H., and Keller, A. (1991). “A Neurological basis of motor learning and memory.” Concepts of Neuroscience, 2, pp. 1-30.

    Barbeau, H., McCrea, D. A., O'Donovan, M. J., Rossignol, S., Grill, W. M., and Lemay, M. A. (1999). “Tapping into spinal circuits to restore motor function.” Brain Research, Brain Research Reviews, 30(1), pp. 27-51.

    Bejczy, A. K., and Salisbury, J. K. (1980). “Kinesthetic Coupling between operator and remote manipulator.” Proceedings International Computer Technology Conference, San Francisco, pp. 197-211.

    Bergamasco, M., Allotta, B., Bosio, L., Ferretti, L., Parrini, G., Prisco, G. M., Salsedo, F., and Sartini, G. (1994). “An Arm Exoskeleton System for Teleoperation and Virtual Environments Applications.” IEEE International Conference on Robotics and Automation (ICRA), San Diego, pp. 1449-1454.

    Bluethman, W., Ambrose, R., Diftler, M., Askew, S., Huber, E., Goza, M., Rehnmark, F., Lovchik, C., and Magruder, D. (2003). “Robonaut - A robot designed to work with humans in space.” Autonomous Robots, 14, pp. 179-197.

  • Metrics
    No metrics available
Share - Bookmark

  • Download from
    TU Delft Repository via NARCIS (Doctoral thesis, 2008)
  • Cite this publication