publication . Article . 2012

Interferometric redatuming by sparse inversion

Van der Neut, J.; Herrmann, F.J.;
Open Access
  • Published: 05 Dec 2012 Journal: Geophysical Journal International, volume 192, pages 666-670 (issn: 0956-540X, eissn: 1365-246X, Copyright policy)
  • Publisher: Oxford University Press (OUP)
  • Country: Netherlands
Abstract
<jats:title>Abstract</jats:title> <jats:p>Assuming that transmission responses are known between the surface and a particular depth level in the subsurface, seismic sources can be effectively mapped to this level by a process called interferometric redatuming. After redatuming, the obtained wavefields can be used for imaging below this particular depth level. Interferometric redatuming consists of two steps, namely (i) the decomposition of the observed wavefields into downgoing and upgoing constituents and (ii) a multidimensional deconvolution of the upgoing constituents with the downgoing constituents. While this method works in theory, sensitivity to noise and...
Subjects
free text keywords: Geochemistry and Petrology, Geophysics, Algorithm, Geology, Interferometry, Remote sensing, Data space, Deconvolution, Curvelet, Depth level, Inversion (meteorology), Seismology, Inverse theory, controlled source seismology
30 references, page 1 of 2

Bakulin, A. & Calvert, R., 2006. The virtual source method: theory and case study, Geophysics, 71, SI139-SI150. [OpenAIRE]

Berkhout, A.J. & Verschuur, D.J., 2006. Focal transformation, an imaging concept for signal restoration and noise removal, Geophysics, 71, A55- A59. [OpenAIRE]

Broggini, F., Snieder, R. & Wapenaar, K., 2012. Focusing the wavefield inside an unknown 1D medium: beyond seismic interferometry, Geophysics, 77, A25-A28. [OpenAIRE]

Cande`s, E.J., Demanet, L., Donoho, D.L. & Ying, L., 2006a. Fast discrete curvelet transforms, SIAM Multiscale Model. Simul., 5, 861-899. [OpenAIRE]

Cande`s, E.J., Romberg, J.K. & Tao, T., 2006b. Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure appl. Math., 59, 1207-1223.

Claerbout, J.F., 1971. Toward a unified theory of reflector mapping, Geophysics, 36, 467-481. [OpenAIRE]

Donoho, D.L., 2006. Compressed sensing, IEEE Trans. Informat. Theory, 52, 1289-1306.

Herrmann, F.J. & Hennenfent, G., 2008. Non-parametric seismic data recovery with curvelet frames, Geophys. J. Int., 173, 233-248. [OpenAIRE]

Herrmann, F.J. & Li, X., 2012. Efficient least-squares migration with sparsity promotion and compressive sensing, Geophys. Prospect., 60, 696-712.

Herrmann, F.J. & Wang, D., 2008. Seismic wavefield inversion with curveletdomain sparsity promotion, in Proceedings of the 76th Annual Meeting, SEG, Expanded Abstracts, Vol. 27, pp. 2497-2501, Las Vegas, USA.

Herrmann, F.J., Wang, D., Hennenfent, G. & Moghaddam, P.P., 2008. Curvelet-based seismic data processing: a multiscale and nonlinear approach, Geophysics, 73, A1-A5.

Jumah, B. & Herrmann, F.J., 2011. Dimensionality-reduced estimation of primaries by sparse inversion, in Proceedings of the 81th Annual Meeting, SEG, Expanded Abstracts, pp. 3520-3525, San Antonio, TX, USA.

Lin, T.T.Y. & Herrmann, F.J., 2011. Robust source signature deconvolution and the estimation of primaries by sparse inversion, in Proceedings of the 81th Annual Meeting, SEG, Expanded Abstracts, pp. 4354-4358, San Antonio, TX, USA.

Mallat, S.G., 2009. A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, Burlington, MA, USA.

Mansour, H., Wason, H., Tim, T.T.Y. & Herrmann, F.J., 2012. Randomized marine acquisition with compressive sampling matrices, Geophys. Prospect., 60, 648-662. [OpenAIRE]

30 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2012

Interferometric redatuming by sparse inversion

Van der Neut, J.; Herrmann, F.J.;